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Abstract. We consider a (not necessarily proper) plant input/output behavior which shall be stabilized by a
proper controller via partial output feedback such that also the feedback behavior is a proper input/output behavior.
In addition a control task like tracking or disturbance rejection shall be performed. The setting includes both the
continuous and the discrete time case, and stability is defined with respect to a set T of stable polynomials. The
standard choice for T yields asymptotic stability.

Our approach relies on the fact that the signal module is an injective cogenerator over the ring of operators and
this property is preserved under localization with respect to the set T .

We present a condition ensuring the existence of proper compensators such that the feedback behavior is proper
and stable and such that the given control task is performed. If this condition is satisfied we construct a large class
of such compensators.

Introduction. Questions of stabilization and control have always been central problems
of systems theory and are extensively treated in the literature. We refer to the introduction
of [2] for a long list of prominent researchers and books in this area of systems theory. For
brevity we only mention the seminal contributions of Kučera [4] and Youla et al. [11, 12] on
parametrization of stabilizing compensators and of Vidyasagar [9] on principal ideal domains
of proper stable rational functions which also play an important part in [2] and the present
article.

We use the behavioral approach and consider behaviors whose signal components be-
long to an injective cogenerator signal module F over a polynomial algebra F [s] over an
infinite field F as ring of operators with action ◦. The standard continuous or discrete one-
dimensional linear time-invariant systems are included in this framework. We define stability
w.r.t. a saturated multiplicatively closed set T of nonzero polynomials in F [s], called T -stable
polynomials: A signal is called T -small or T -negligible if it is annihilated by some polyno-
mial in T , a behavior is T -autonomous if all its trajectories are T -small, and an input/output
behavior is T -stable if its autonomous part is T -autonomous. If Ω⊆ F is the set of all roots of
polynomials in T in an algebraic closure F of F , for instance F =R⊆R=C, then T consists
of all polynomials with roots in Ω, compare [9, p.14f], [8, Ch.5]. We use both the rings F [s]T
of T -stable rational functions and their subrings S of proper and T -stable rational functions
[9, Ch.2], [8, Ch.5].

We consider the partial output feedback interconnections displayed in Figure 1 which
were suggested by Willems at the MTNS 2010 conference in Budapest. This configuration
is a generalization of [10, Eq.11], the two-parameter compensators from [9, Sec.5.6], and the
RST-controllers from [3, Ch.7]. Both the plant B1 and the compensator B2 are input/output
(IO) behaviors and the interconnected system is required to have the following properties: (i)
The feedback system is well-posed, i.e., is itself an IO behavior, and proper and T -stable, i.e.,
its autonomous part is T -autonomous and its transfer matrix is proper and (automatically)
T -stable. (ii) The compensator B2 is proper. Up to the properness of B1 which is not
required here the feedback interconnection is regular in the sense of [10, p.334]. (iii) The
interconnected system performs desired tasks like tracking or disturbance rejection. More
precisely: If the inputs u1 and u2 of plant and compensator are contained in given external
behaviors then a given linear function of the signals of plant and compensator produces T -
small signals.

For a given plant B1 and the desired properties (i)-(iii) the problem is is to decide the
existence of such compensators B2, to parametrize all of them and also to solve the problem
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FIG. 0.1. The partial output feedback behavior fbp(B1,B2).

of pole placement of the feedback system. We solve this problem constructively, but we do
not construct all, but only a large class of such compensators, the properness of B2 requiring
special attention and special new algorithms. The references [3], [9], and [10] mentioned
above give partial solutions to the described problem.

We use a technique which has been introduced by Oberst and which has already been
successfully applied in [2] and the thesis [1] and which depends essentially on the fact that
the quotient module FT is an injective cogenerator over the ring F [s]T . In particular, the
action of h ∈ F [s]T on u ∈FT gives a well-defined trajectory h ◦ u ∈FT whereas the often
used hu, for instance for h ∈ R(s)\R[s] and u ∈F := C ∞(R,R), is defined for the Laplace
transforms (i.e., in the frequency domain) only and not sufficient when actual behaviors and
not only their transfer matrices are studied. More generally, every stable rational transfer
matrix H ∈ F [s]p×m

T induces an IO-operator H◦ : F m
T →F p

T .
Stabilization and regulation have recently been studied for more general regular intercon-

nections of behaviors instead of the partial feedback interconnections of the present paper
by Belur, Fiaz, Praagman, Rocha, Takaba, Trentelman, Willems, Zavala, and others. In the
author’s thesis [1] the technique of the present article has also been successfully applied to
these interconnections; the results, as well as the proofs of the results of the present paper,
will appear in a forthcoming publication.

1. Preliminaries. We consider the ring of operators D := F [s], i.e., the polynomial ring
over some infinite field F in one indeterminate s, and the signal module F which is assumed
to be an injective cogenerator over D . A behavior is a set of the form B = {w ∈F `; R◦w =
0}where R∈Dk×`, i.e., the set of solutions of a system of linear time-invariant homogeneous
differential resp. difference equations in the continuous resp. discrete standard case. We sum-
marize some results on localization of D and F with respect to the multiplicatively closed
saturated set T ⊆ D \ {0} which have already been used in [2]. The set T gives rise to the
quotient ring DT :=

{ d
t ∈ F(s); d ∈D , t ∈ T

}
of D w.r.t. T and to the quotient signal module

FT :=
{w

t ; w ∈F , t ∈ T
}

. Elements of DT are called T -stable rational functions. The quo-
tient or localization functor (−)T is exact. FT is an injective cogenerator over DT , and the
signal module F is isomorphic to FT ⊕ tT (F ) where tT (F ) := {w ∈F ; ∃t ∈ T : t ◦w = 0}
denotes the T -torsion module of F , i.e., the set of all T -small signals in F . Hence elements
of FT can be interpreted as the “essential part” of signals in F , or as signals in F “up to
a T -small (and hence negligible) part”. Likewise, a behavior B = {w ∈ F `; R ◦w = 0},
R∈Dk×`, can be decomposed as B ∼=BT ⊕ tT (B) with tT (B) :=B∩(tT (F ))`. Again BT
can be interpreted as B “up to a T -small part”. Moreover, BT = {w ∈F `

T ; R ◦w = 0} and
(P◦B)T = P◦BT for P ∈D p×`.

DEFINITION 1.1 (T -autonomy, T -stability, T -observability).
1. A behavior B =

{
w ∈F `; R◦w = 0

}
, R ∈Dk×`, is called T -autonomous if all its

signals are T -small, i.e., if B ⊆ (tT (F ))`. By the direct sum decomposition of behaviors
this is the case iff BT = 0 or, since FT is an injective cogenerator over DT , iff R admits a
left inverse in D `×k

T . T -autonomy signifies being zero resp. autonomy resp. autonomy and
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asymptotic stability for standard choices of T .
2. An input/output behavior [6, Sec.3.3], [5, Thm.2.69 on p.37] B= {( y

u)∈F p+m; P◦
y = Q◦u} with (P,−Q) ∈Dk×(p+m), rank(P) = rank(P,−Q) = p, is called T -stable if its au-
tonomous part B0 := {y ∈F p; P◦ y = 0} is T -autonomous.

3. For a behavior B = {( wr
wm ) ∈F r+m; Rr ◦wr +Rm ◦wm = 0}, (Rr, Rm) ∈Dk×(r+m),

wr is T -observable from wm in B if wm = 0 implies that wr is T -small for all ( wr
wm ) ∈B. This

is the case iff Rr admits a left inverse in D r×k
T . T -observability coincides with observability,

trackability, or detectability in standard cases as introduced in [7, Def.2.1].
When dealing with properness issues we use the ring S := DT ∩F(s)pr of proper T -

stable rational functions where F(s)pr :=
{

f
g ∈ F(s); f ,g ∈D ,g 6= 0,deg( f )≤ deg(g)

}
. We

always assume that T contains an element (s−α) for some α ∈ F (otherwise saturation of
T would imply that T = C \ {0} and hence S = C in the standard case F = C). Defining
σ := (s−α)−1 and D̂ := F [σ ] yields S = D̂T̂ where T̂ :=

{
t

(s−α)deg(t) ; t ∈ T
}
⊆ D̂ , and

F(s)pr = D̂
D̂\D̂σ

. Moreover, the quotient ring Sσ :=
{

ξ

σ j ; ξ ∈S , j ∈ N
}

is equal to DT .

2. Main Results. According to Figure 0.1 we consider a plant B1 and a compensator
B2 where

B1 =

{( y11
y12
y2
u1

)
∈F p1+p12+m+m1 ; (P11, P12)◦

(
y11
y12

)
= (Q12, Q11)◦

(
y2
u1

)}
with p := p1 + p12, y1 := ( y11

y12 ) ∈F p1+p12 = F p,

P1 := (P11, P12) ∈D p×(p1+p12), det(P1) 6= 0, (Q12, Q11) ∈D p×(m+m1),

B2 =

{( u2
y12
y2

)
∈F p2+p12+m; P2 ◦ y2 = (Q22, Q21)◦

(
u2
y12

)}
with P2 ∈Dm×m, det(P2) 6= 0, (Q22, Q21) ∈Dm×(p2+p12).

(2.1)

We will study existence and construction of compensators B2 such that the partial out-
put feedback interconnection fbp(B1,B2) of B1 and B2 from Figure 0.1 is a T -stable in-
put/output behavior with input (u1

u2 ) and output ( y1
y2 ). We require both the compensator and

the feedback behavior to have proper transfer matrix. We do however not assume properness
of the plant B1.

DEFINITION 2.1. Let B1 and B2 be input/output behaviors as in (2.1).
1. As visualized in Figure 0.1 the partial feedback behavior of B1 and B2 is defined

as

fbp(B1,B2) :=
{( y1

y2
u1
u2

)
∈F p+m+m1+p2 ;(

P1 −Q12
−Q2 P2

)
◦
(

y1
y2

)
=

(
Q11 0

0 Q22

)
◦
(

u1
u2

)}
where Q2 := (Q20, Q21) ∈ Dm×(p1+p12) = Dm×p with Q20 = 0 ∈ Dm×p1 . In the notation of
Willems fbp(B1, B2) = B1∧(y12,y2) B2.

2. The partial feedback behavior is called well-posed if it is an input/output behavior
with input (u1

u2 ) and output ( y1
y2 ) =

( y11
y12
y2

)
. This signifies that

(
P1 −Q12
−Q2 P2

)
is non-singular or

has full rank p+m = rank(P1,−Q12)+ rank(−Q2, P2) or, equivalently, that

D1×p(P1,−Q12)⊕D1×m(−Q2, P2) = D1×(p+m)
(

P1 −Q12
−Q2 P2

)
.
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3. The plant B1 is T -stabilizable by partial feedback if there exists a compensator B2
such that fbp(B1, B2) is well-posed and T -stable. In this case any such compensator B2 is
called a T -stabilizing compensator of B1.

REMARK 2.2. Note that T -stabilizability by partial feedback as defined above is a stronger
property than the usual T -stabilizability which can be achieved by full feedback, i.e., where
all inputs and outputs of the plant are available for the feedback interconnection. In the fol-
lowing a T -stabilizing compensator means a compensator that stabilizes the plant by partial
feedback.

LEMMA 2.3. The partial feedback behavior fbp(B1, B2) is well-posed and T -stable if

and only if
(

P1 −Q12
−Q2 P2

)
∈ Glp+m(DT ). This is equivalent to the direct sum decomposition

D1×p
T (P1,−Q12)⊕D1×m

T (−Q2, P2) = D
1×(p+m)
T .

THEOREM 2.4 (Characterization of T -stabilizability by partial feedback). The plant B1
is T -stabilizable by partial feedback if and only if the following two conditions are satisfied:

1. The matrix (P1,−Q12) has a right inverse in D
(p+m)×p
T , i.e., B′1 := {( y1

v1 ) ∈F p+m;
P1 ◦y1 = Q12 ◦v1} is T -stabilizable (by full feedback) or the localization B′1,T is controllable
(see e.g. [2, Thm.3.12.2]).

2. The matrix P11 has a left inverse in D p1×p
T , i.e., y11 is T -observable from y12 in B0

1 .
REMARK 2.5. If the conditions of Theorem 2.4 are satisfied a constructive parametriza-

tion of all compensators B2 such that fb(B1,B2) is T -stable can be achieved. Also those
compensators B2 such that fbp(B1,B2) is additionally proper can be constructed based
on this parametrization. This procedure does however not yield a good characterization or
construction of proper compensators B2. We choose another approach in the following: Un-
der a slightly stronger condition than the one in Theorem 2.4 we construct a large class of
T -stabilizing compensators B2 such that both fbp(B1,B2) and B2 are proper.

ASSUMPTION 2.6. Assume that (P1,−Q12) ∈ D p×(p+m) is right invertible over DT .
Let (P̂1,−Q̂12) ∈ D̂ p×(p+m) be the controllable realization of H12 := P−1

1 Q12 over D̂ , i.e.,
H12 = P̂−1

1 Q̂12 a left coprime factorization of H12 over D̂ [2, Lem.2.4]. Then (P̂1,−Q̂12) is
right invertible over D̂ and D1×p

T (P1,−Q12) = D1×p
T (P̂1,−Q̂12) since both (P1,−Q12) and

(P̂1,−Q̂12) are controllable realizations of H12 over DT .
ASSUMPTION 2.7. Under Assumption 2.6 assume left invertibility of the submatrix P̂11

of P̂1 = (P̂11, P̂12) ∈ D̂ p×(p1+p12) over S . Note that this is a slightly stronger assumption
than the necessary condition according to Theorem 2.4 where left invertibility of P̂11 – or
equivalently of P11 – over DT is required.

ASSUMPTION 2.8. Under Assumption 2.7 let Q̂11 ∈D p×m1
T be the (uniquely determined)

matrix such that D1×p
T (P1,−Q12,−Q11) =D1×p

T (P̂1,−Q̂12,−Q̂11). Assume that Q̂11 is con-
tained in S p×m1 .

LEMMA 2.9. Under Assumption 2.7 matrices
(

D̂0
2

N̂0
2

)
∈ S (p+m)×p and (−Q̂0

2, P̂0
2 ) ∈

S m×(p+m) where the submatrix Q̂0
20 ∈ S m×p1 of Q̂0

2 = (Q̂0
20, Q̂0

21) ∈ S m×(p1+p12) is zero

can be computed such that
(

P̂1 −Q̂12
−Q̂0

2 P̂0
2

)(
D̂0

2 N̂1

N̂0
2 D̂1

)
= idp+m and the following sequences are

split exact:

0 −→ S 1×p ◦(P̂1,−Q̂12)−−−−−−→ S 1×(p+m)
◦
(

N̂1
D̂1

)
−−−−→ S 1×m −→ 0,

0 ←− S 1×p
◦

(
D̂0

2
N̂0

2

)
←−−−− S 1×(p+m)

◦(−Q̂0
2, P̂

0
2 )←−−−−−− S 1×m ←− 0.
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In order to treat properness of the compensator B2 we use the equality F(s)pr = D̂
D̂\D̂σ

from [2, Lem.3.18] and the ring homomorphism

νσ : F(s)pr −→ F, r = f̂ ĝ−1 7−→ f̂ (0)ĝ(0)−1 where f̂ ∈ D̂ = F [σ ], ĝ ∈ D̂ \ D̂σ

from [2, Lem.3.17]. For matrices M ∈ F(s)k×`
pr we write νσ (M) for (νσ (Mi j))i, j.

THEOREM 2.10 (Construction of compensators). Let B1 be a plant satisfying As-
sumption 2.8. With the notations from above and a universal left annihilator Ŵ ∈ D̂ p12×p of
P̂11 over D̂ the following construction yields T -stabilizing compensators B2 such that both
fbp(B1,B2) and B2 are proper.

• Choose Y0 ∈ Fm×p12 such that det
(

νσ (P̂0
2 )−Y0Ŵ (0)Q̂12(0)

)
6= 0. Almost all Y0 ∈

Fm×p12 satisfy this condition. With P̂2 := P̂0
2 −YŴQ̂12 where Y ∈S m×p12 is such

that νσ (Y ) = Y0 this signifies that νσ (P̂2) ∈ Glm(F) or that P̂2 is non-singular and
invertible over F(s)pr by [2, Cor.3.23].

• Choose Y1 ∈S m×p12 arbitrarily and define Y := Y0 +σY1 and

(−Q̂2, P̂2) := (−Q̂0
2, P̂0

2 )+YŴ (P̂1,−Q̂12) ∈S m×(p+m),(
D̂2

N̂2

)
:=
(

D̂0
2

N̂0
2

)
−
(

N̂1

D̂1

)
YŴ ∈S (p+m)×p.

Then P̂2 ∈S m×m∩Glm(F(s)pr) and Q̂20 = 0 where Q̂2 =: (Q̂20, Q̂21)∈S m×(p1+p12).
• Choose Q̂22 ∈S m×p2 arbitrarily and define H2 := (H22, H21) := P̂−1

2 (Q̂22, Q̂21).
• Let H2 = (Pc

2 )
−1(Qc

22, Qc
21) be a left coprime factorization of H2 over D and choose

A ∈ Dm×m ∩Glm(DT ). Let (−Q22,−Q21, P2) := A(−Qc
22,−Qc

21, Pc
2 ) and B2 :={( u2

y12
y2

)
∈F p2+p12+m; P2 ◦ y2 = (Q22, Q21)◦ ( u2

y12 )
}

.

LEMMA 2.11. In the situation of Assumption 2.6 P̂−1
1 is proper iff H12 := P−1

1 Q12 is
proper. In this case the matrix Q̂11 from Assumption 2.8 is proper iff H11 := P−1

1 Q11 is so.
We deduce that in particular the (necessary) conditions of Theorem 2.4 and properness

of the transfer matrix H1 = (H12, H11) = P−1
1 (Q12, Q11) of the plant B1 imply the conditions

of Assumption 2.8 and are hence sufficient for applicability of Theorem 2.10. Assumption 2.8
may however be satisfied even if the plant B1 is not proper.

REMARK 2.12 (Pole placement). If α ∈ F is chosen and Assumption 2.8 is satisfied for
some saturated monoid T ⊆D \{0} containing (s−α) (for example for T = D \{0}), then
there is a smallest possible saturated monoid T1 containing (s−α) such that Assumption 2.8
is still satisfied for T = T1 and S = S1 := DT1 ∩F(s)pr. The set T1 is the saturated monoid
generated by the product t1 of (s−α) and the greatest elementary divisors of (P1,−Q12) and
of P11 over D . Then the construction in Theorem 2.10 with T = T1 and S = S1 yields T1-
stabilizing compensators B2 of B1 such that both fbp(B1,B2) and B2 are proper. Moreover,
given any other saturated monoid T̃ containing (s−α), B1 admits a T̃ -stabilizing compen-
sator (such that fbp(B1,B2) and B2 are proper) if and only if T1 ⊆ T̃ . In particular, for any
polynomial t2 that is a multiple of (s−α) and the saturated monoid T2 generated by t2, there
exists a T2-stabilizing compensator B2 of B1 (such that fbp(B1,B2) and B2 are proper) if
and only if t2 is a multiple of t1.

For the details of these considerations compare [2, Thm.3.15, Thm.4.11].
Finally we study the regulation problem. We consider again a plant B1 and are interested

in constructing compensators B2 (by partial output feedback) that perform additional control
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tasks with the data from (2.1). We assume external behaviors

E1 = {u1 ∈F m1 ; V1 ◦u1 = 0} , E2 = {u2 ∈F p2 ; V2 ◦u2 = 0} ,

V1 ∈D `1×m1 , V2 ∈D `2×p2 , and a linear operator K = (Ky, Ku) ∈De×((p+m)+(m1+p2)).
DEFINITION 2.13. The T -stabilizing compensator B2 of the plant B1 is called a T -reg-

ulator (of B1 w.r.t. E1, E2, and K) if K ◦
( y1

y2
u1
u2

)
is T -small for all

( y1
y2
u1
u2

)
∈ fbp(B1,B2) with

u1 ∈ E1 and u2 ∈ E2.
This definition contains important control problems such as for example tracking (any

of the components of y1 = ( y11
y12 ) and y2 shall “track” any input u1 satisfying the conditions

of E1 and/or u2 satisfying the conditions of E2), disturbance rejection (y1 and y2 or some
components thereof shall not be influenced by any disturbances u1 ∈ E1 and/or u2 ∈ E2),
combinations thereof etc.

THEOREM 2.14 (Characterization of T -regulators). Assume a T -stabilizing compensator
B2 of B1 constructed according to Theorem 2.10 and the data from above. Then B2 is a
T -regulator if and only if there exists Z ∈D

e×(`1+`2)
T such that

Ky

(
D̂2Q̂11 N̂1Q̂22

N̂2Q̂11 D̂1Q̂22

)
+Ku = Z

(
V1 0
0 V2

)
.

COROLLARY 2.15 (Existence of T -regulators). Assume a plant B1 satisfying the con-
ditions of Assumption 2.8, external behaviors E1 and E2, and a linear operator K as above.
Then B1 admits a T -regulator B2 w.r.t. E1, E2, and K such that B2 and fbp(B1,B2) are

proper if there exist matrices Y ∈S m×p12 , Q̂22 ∈S m×p2 , and Z ∈D
e×(`1+`2)
T such that

Ku +Ky

(
D̂0

2Q̂11 0
N̂0

2 Q̂11 0

)
+Ky

(
−N̂1YŴQ̂11 N̂1Q̂22

−D̂1YŴQ̂11 D̂1Q̂22

)
= Z

(
V1 0
0 V2

)
and (2.2)

det
(

νσ (P̂0
2 )−νσ (Y )Ŵ (0)Q̂12(0)

)
6= 0. (2.3)

REMARK 2.16. The existence of Y ∈S m×p12 , Q̂22 ∈S m×p2 , and Z ∈ D
e×(`1+`2)
T such

that the equation (2.2) and the inequality (2.3) are satisfied can be checked and all possible
solutions can be constructed as described in [2] after Remark 4.7.

COROLLARY 2.17 (Construction of T -regulators). Assume that the conditions of Corol-
lary 2.15 are satisfied. Then the following construction yields T -regulators B2 of B1 w.r.t.
E1, E2, and K such that both fbp(B1,B2) and B2 are proper.

• Choose Y ∈ S m×p12 and Q̂22 ∈ S m×p2 satisfying (2.2) and (2.3) for some Z ∈
D

e×(`1+`2)
T , compare Remark 2.16. Define (−Q̂2, P̂2) :=(−Q̂0

2, P̂0
2 )+YŴ (P̂1,−Q̂12).

Then Q̂2 = (0, Q̂21) ∈S m×(p1+p12) = S m×p and P̂2 ∈S m×m∩Glm(F(s)pr).
• Let Rc

2 := (−Qc
22,−Qc

21, Pc
2 ) be the controllable realization of H2 := P̂−1

2 (Q̂22, Q̂21)
over D , i.e., H2 = (Pc

2 )
−1(Qc

22, Qc
21) a left coprime factorization of H2 over D .

Choose A ∈Dm×m∩Glm(DT ) and define (−Q22,−Q21, P2) := A(−Qc
22,−Qc

21, Pc
2 )

and B2 :=
{( u2

y12
y2

)
∈F p2+p12+m; P2 ◦ y2 = (Q22, Q21)◦ ( u2

y12 )
}

.

REMARK 2.18 (Pole placement). The pole placement problem can be treated similarly
to Remark 2.12, compare also [2, Thm.4.11].
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[3] Henri Bourlès. Systèmes linéaires. Hermes Science Publications, Paris, 2006.
[4] V. Kučera. Discrete Linear Control. The polynomial equation approach. John Wiley & Sons, Chichester,

1979.
[5] U. Oberst. Multidimensional constant linear systems. Acta Appl. Math., 20(1-2):1–175, 1990.
[6] J. W. Polderman and J. C. Willems. Introduction to Mathematical Systems Theory. A behavioral approach.

Springer-Verlag, New York, 1998.
[7] M. E. Valcher and J. C. Willems. Observer synthesis in the behavioral approach. IEEE Trans. Automat.

Control, 44(12):2297–2307, 1999.
[8] A. I. G. Vardulakis. Linear Multivariable Control. Algebraic analysis and synthesis methods. John Wiley &

Sons, Chichester, 1991.
[9] M. Vidyasagar. Control System Synthesis. A factorization approach. MIT Press, Cambridge, MA, 1985.

[10] J. C. Willems. On interconnections, control, and feedback. IEEE Trans. Automat. Control, 42(3):326–339,
1997.

[11] D. C. Youla, J. J. Bongiorno, Jr., and H. A. Jabr. Modern Wiener-Hopf design of optimal controllers. Part I:
The single-input-output case. IEEE Trans. Automatic Control, AC-21(1):3–13, 1976.

[12] D. C. Youla, H. A. Jabr, and J. J. Bongiorno, Jr. Modern Wiener-Hopf design of optimal controllers. Part II:
The multivariable case. IEEE Trans. Automatic Control, AC-21(3):319–338, 1976.


