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Abstract. In this paper a control problem for a controlled linear stochastic equation in a Hilbert
space and an exponential quadratic cost functional of the state and the control is formulated and
solved. The stochastic equation can model a variety of stochastic partial differential equations with
the control restricted to the boundary or to discrete points in the domain. The solution method does
not require solving a Hamilton-Jacobi-Bellman equation and the method provides an explanation for
an additional term in the Riccati equation as compared to the Riccati equation for a quadratic cost
functional. The optimal cost is also given explicitly. Some examples of controlled stochastic partial
differential equations are given.
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1. Introduction. An important generalization of the linear-quadratic Gaussian
(LQG) control problem is the linear-exponential-quadratic Gaussian (LEQG) control
problem particularly for its application in risk sensitive control and its relation to
differential games. An LEQG problem is similar to an LQG control problem except
that the cost is an exponential of a quadratic functional of the state and the con-
trol instead a quadratic functional. The LEQG problem for finite dimensional linear
systems is solved in [11] by determining a solution to the Hamilton-Jacobi-Bellman
(HJB) equation associated with this stochastic control problem. A different approach
to the solution of this finite dimensional problem is given in [3] where a combination
of the methods of completion of squares and absolute continuity of measures is used
for the solution. This latter approach provides an explanation for the additional term
of the Riccati equation for the LEQG problem as compared with the Riccati equation
for the LQG problem and this approach is more elementary and direct than solving
the HJB equation for the LEQG problem.

A natural generalization of this LEQG control problem for systems in finite di-
mensions is to linear stochastic equations in an infinite dimensional Hilbert space that
can model various types of controlled linear stochastic partial differential equations.
In this paper such a problem is formulated and solved. A semigroup approach is
used where the semigroups are analytic [15]. The control can be restricted to discrete
points in the domain or to the boundary of the domain to describe a typical controlled
physical system and is the primary reason for restriction to analytic semigroups. Thus
in addition to the infinitesimal generator acting on the state, the linear transformation
acting on the control is also an unbounded operator so that properties of the solution
of the Riccati equation require more refinement than for distributed control to ensure
that the optimal control in the system equation is well defined.
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2. Preliminaries. The controlled linear stochastic system is described by the
following stochastic differential equation

dX(t) = AX(t)dt+BU(t)dt+ ΦdW (t) (2.1)

X(0) = X0

whereX(t) ∈ H for t ∈ [0, T ], H is a real, separable, infinite dimensional Hilbert space,
and (W (t), t ∈ [0, T ]) is a standard cylindrical Wiener process in H. The complete
probability space is denoted (Ω,F ,P) where P is induced from the standard cylindrical
measure for the Wiener process and F is the P-completion of the Borel σ-algebra on
Ω. Let (F(t), t ∈ [0, T ]) be an increasing P-complete family of sub-σ-algebras of F
such that X(t) is F(t) measurable for each t ∈ [0, T ] and (< l,W (t) >, t ∈ [0, T ]) is
a Brownian martingale with local variance |l|2H for each nonzero l ∈ H. The linear
operator A is the infinitesimal generator of an analytic semigroup on H (e.g. [15]).
Thus for some β > 0 the operator −A + βI is strictly positive so that the fractional
powers (−A + βI)γ and (−A∗ + βI)γ and the spaces Dγ

A = D((−A + βI)γ) and
Dγ
A∗ = D((−A∗+βI)γ) with the graph norm topology for γ ∈ R can be defined. The

linear space D(·) denotes the domain of ·. It is assumed that B ∈ L(H1, D
ε−1
A ) where

H1 is a real, separable Hilbert space and ε ∈ (0, 1). The linear operator Φ is assumed
to be Hilbert-Schmidt. It is assumed that for each x ∈ H there is a ux ∈ L2([0, T ], H1)
such that

y(·) = S(·)x+

∫ ·
0

S(· − r)Bux(r)dr ∈ L2([0, T ], H) (2.2)

The cost functional J is an exponential of a quadratic functional of X and U that
is given by

J(U) = E exp[
µ

2

∫ T

0

< QX(s), X(s) > + < RU(s), U(s) > ds

+
µ

2
< MX(T ), X(T ) >] (2.3)

where T > 0 is fixed, µ > 0 is fixed, and Q and R are strictly positive, self-adjoint
operators.

The Riccati equation to solve the LQG problem with the linear stochastic system
(2.1) and the quadratic cost that appears in the exponential function (2.3) is the
following formal equation

−dP
dt

= A∗P + PA− PBR−1B∗P +Q (2.4)

P (T ) = M (2.5)

The equation (2.4) can be modified to a mathematically meaningful inner product
equation as

− d

dt
< Px, y > = < Ax,Py > + < Px,Ay > − < R−1B∗Px,B∗y > (2.6)

+ < Qx, y >

for x, y ∈ D(A). It is known that there is a unique, nonnegative self-adjoint solution
of (2.6) (cf. [2], [8], [9], [13]).
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The family of admissible controls, U , is

U = {U : [0, T ] × Ω → H1| U is adapted to (F(t), t ∈ [0, T ]) and
∫ T
0
|U(t)|pdt <

∞ a.s.}

where p > max{2, 1/ε} is fixed.

3. Main Result. In this section an optimal control is explicitly given for the
control problem for the linear system (2.1) and the cost (2.3). The authors are not
aware of any previous results for an optimal control for an exponential quadratic cost
with a linear stochastic system with boundary or point control in a general Hilbert
space.

Theorem 3.1. The optimal control problem given by (2.1) and (2.3) has an
optimal control, (U∗(t), t ∈ [0, T ]), in U that is given by

U∗(t) = −R−1CTP (t)X(t) (3.1)

where (P (t), t ∈ [0, T ]) is assumed to be the unique, symmetric, positive L(H,D1−ε
A∗ )-

valued solution of the following Riccati equation

− d

dt
< Px, y > = < xA,Py > + < Px,Ay > − < R−1B∗Px,B∗Py >

− µ < Φ∗Px,Φ∗Py > + < Qx, y > (3.2)

< P (T )x, y > = < Mx, y >

for x, y ∈ D(A) and the optimal cost is

J(U∗) = G(0)exp[
µ

2
< P (0)X0, X0 >] (3.3)

and (G(t), t ∈ [0, T ]) satisfies

−dG
dt

=
µ

2
Gtr(PΦΦ∗) (3.4)

G(T ) = 1

Sketch of proof. Initially a completion of squares is made of the terms that appear
in the exponent of the cost using the methods in [5], [6]. With the completion of the
square there are three terms that do not occur in the square of an affine functional of
the control. One of these terms determines the optimal cost and the other two terms
provide a (local) Radon-Nikodym derivative that transforms the Wiener measure for
(ΦW (t), t ∈ [0, T ]) by addition of a drift term. Thus all of the terms in the exponent
are accounted and the optimal control and the optimal cost follow. A complete proof
of this theorem is given in [7].

The difference between the Riccati equation (2.6) for the LQG problem and the
Riccati equation (3.2) for the LEQG problem is the term −µ < Φ∗Px,Φ∗Py >
that arises from the quadratic term in the exponential function for a Radon-Nikodym
derivative that transforms the Wiener measure for (ΦW (t), t ∈ [0, T ]) by adding a drift
term that appears as a stochastic integral. For the completion of squares for the LQG
problem the stochastic integral term has expectation zero, so it disappears with the
operation of expectation. For the completion of squares for the LEQG problem there
is an exponential of the stochastic integral term so that it does not have expectation
zero. The Radon-Nikodym derivative (exponential martingale) is the natural way to
eliminate this exponential of a stochastic integral.
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4. Some Examples. Some examples are given now that indicate the range of
applicability of the optimal control result.
Example 1. This is a family of examples from elliptic differential operators which
is discussed in more detail in [4]. Let G be a bounded, open domain in Rn with
C∞-boundary ∂G with G locally on one side of ∂G and let L(x,D) be an elliptic
differential operator of the form

L(x,D)f = Σni,j=1Diaij(x)Djf + Σni=1[bi(x)Dif +Di(di(x)f)] + c(x)f (4.1)

where the coefficients aij , bi, di, c are elements of C∞(G)

Σaij(x)ξiξj ≥ ν̂|ξ|2 (4.2)

where ξ = (ξ1, ..., ξn) ∈ Rn, x ∈ G, ν̂ > 0 is a constant, and {aij} is symmetric.
Consider a stochastic parabolic control problem formally described by the equations

∂y

∂t
= L(x,D)y(t) + η(t, x) (4.3)

for (t, x) ∈ R+ ×G and

∂y

∂t
+ h(x)y(t, x) = u(t, x) (4.4)

for (t, x) ∈ R+ × ∂G and y(0, x) = y0(x) where ∂
∂ν = Σni,j=1aijνjDi is the out-

ward normal derivative, ν = (ν1, ..., νn) is the unit outward normal to ∂G, the
process (η(t, x), (t, x) ∈ R+ × G) formally denotes a space dependent white noise,
u ∈ L2(0, T, L2(∂G)), h ∈ C∞(∂G), and h ≥ 0.

To give a mathematical description to (4.3) and (4.4), a semigroup approach [15]
is used. Let H = L2(G), H1 = L2(∂G) and define the infinitesimal generator as
Af = L(x,D)f so that A : D(A) → H and D(A) = {f ∈ H2(G) : ∂f

∂ν = 0 on ∂G}.
It is well known that A generates an analytic semigroup (e.g. [15]) and the linear
operator (A− βI) is strictly negative for some β ≥ 0.

To define the control operator in the stochastic equation, consider the elliptic
problem

(L(x,D)− β)z = 0 on G (4.5)

∂z

∂ν
+ hz = −g on ∂G (4.6)

For g ∈ L2(∂G), these is a unique solution z ∈ H 3
2 [14]. Define B̂ ∈ L(H1, H

3
2 ) by

the equation, B̂g = −z. For ε < 3
4 , B̂ ∈ L(H1, D

ε
A) because D

3
4−γ
A = H

3
2−2γ for a

sufficiently small γ > 0 [10]. Let yβ(t, x) = e−βty(t, x) and η(t, x)dt = ΦdW (t) for
some Φ ∈ L(H) and a standard cylindrical Wiener process (W (t), t ∈ [0, T ]) in H.
From (4.5), (4.6) it follows that

dyβ = (L(x,D)− β)yβdt+ e−βtΦdW (t) (4.7)

∂yβ
∂ν

+ hyβ = e−βtu = uβ(t) on ∂G (4.8)

yβ(0) = y(0) (4.9)
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Formally performing the differentiation ( ∂∂t )B̂uβ(t), it follows that

dωβ(t) = ((L(x,D)− β)yβ(t)− B̂vβ(t))dt+ e−βtΦdW (t) (4.10)

∂ωβ
∂ν

+ hωβ = 0 on R+ × ∂G (4.11)

where vβ is the formal time derivative of uβ and ωβ(t) = yβ(t) − B̂uβ(t). For (4.7)
the mild solution is

ωβ(t) = Sβ(t)(y(0) + B̂u(0)) +

∫ t

0

Sβ(t− r)ΦeβrdW (r) (4.12)

−
∫ t

0

Sβ(t− r)B̂vβ(r)dr

where Sβ(t) = et(A−βI). Formally integrating by parts in the Lebesgue integral in
(4.12) and canceling the term e−βt gives

y(t) = S(t)y(0) +

∫ t

0

S(t− r)Bu(r)dr +

∫ t

0

S(t− r)ΦdW (r) (4.13)

which is a mild solution to a stochastic equation of the form (2.1) where B = Ψ∗ and
Ψ∗ ∈ L(D1−ε

A∗ , H1) extends the linear operator B̂∗(A∗ − βI).
Example 2. A second example is a structurally damped plate with random loading
and point control (cf. [4] for more details). Consider the following model of a plate
in the deflection ω

ωtt(t, x) + ∆2ω(t, x)− α∆ω(t, x) = δ(x− x0)u(t) + η(t, x) (4.14)

for (t, x) ∈ R+ ×G
ω(0, ·) = ω0 ωt(0, ·) = ω1 (4.15)

ω|R+×∂G = ∆ω|R+×∂G = 0 (4.16)

where α > 0 is a constant, η(t, x) formally represents a space-dependent Gaussian
white noise on the open, bounded, smooth domain G ⊂ Rn for n ≤ 3, and δ(x− x0)
is the Dirac distribution at x0 ∈ G. The cost functional is

J(ω0, ω1, u, T ) =

∫ T

0

(|ω(t)|2H2(G) + |ωt(t)|2L2(G) + |u(t)|2)dt (4.17)

The deterministic version of this control problem, that is η ≡ 0, is given in [1], [12].
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