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Abstract. The lack of a suitable probabilistic characterization of the input process for a system
of cascaded analytic nonlinear input-output maps is an obstacle to well-posedness. The only known
condition is when a certain independence property is preserved by the first system in the connection.
In this paper, T. Lyons’ construction of a rough path is employed as an alternative characterization
of an input process having arbitrary p-variation to ensure well-posedness of a cascade connection.

1. Introduction. In many applications, input-output systems are interconnected
to form more complex systems. Describing the nature of the composite system and
providing some explicit parametrization for it are generally nontrivial problems when
the subsystems are nonlinear. The systems of interest here belong to the class of an-
alytic nonlinear integral operators known as Fliess operators [5,8,13]. It was recently
shown in [2, 3] that the lack of a suitable probabilistic characterization of the input
process for interconnections of such systems is an obstacle to well-posedness. For ex-
ample, the cascade connection of two Fliess systems is only known to be well-posed
when a certain independence property is preserved by the first system in the connec-
tion. Hence, it appears that some alternative characterization of an input process is
needed in this setting. One possibility is to employ T. Lyons’ construction of a rough
path [6, 11, 12]. This concept employs p-variation paths and Chen’s identity in order
to extend the notion of integration with respect to paths having finite p-variation for
p ≥ 1. It will be shown in this paper that the primary advantage of such an approach
is that independence is no longer needed for producing well-posed cascaded Fliess
operators.

The specific goals of the paper are to introduce the Fliess signature operator,
which maps the input signature of a p-variation input to its corresponding output
signature, and then to characterize the cascade interconnection for this class of opera-
tors. The first step is to introduce the notion of a path’s signature as a substitute for its
functional form. Lyon’s rough path theory is then applied directly to characterize such
a signature as a p-rough path. The next step is to introduce an algebraic device known
as a transduction in order to define the Fliess signature operator. Finally, a charac-
terization of the cascade interconnection is made in terms of transductions. In this
setting, it can be shown directly that the composite system produces a well-defined
output path, thus solving the open problem.

The paper is organized as follows. Section 2 summarizes the basics of rough path
theory and Fliess operator theory used throughout the paper. In Section 3, the defini-
tions of a Fliess operator and a Fliess signature operator driven by a p-rough path are
presented. It is then shown that the output of a Fliess signature operator is a p-rough
path. Finally, Section 4 gives a characterization of the cascade of Fliess signature op-
erators in terms of the composition of their corresponding transductions. Given the
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space limitations, many of the proofs will be deferred to a future publication.

2. Fliess Operators with Rough Path Inputs. A finite nonempty set of
noncommuting symbols X = {x0, x1, . . . , xm} is called an alphabet. Each element of
X is called a letter, and any finite sequence of letters fromX , η = xi1 · · ·xik , is called a
word overX . The length of η, |η|, is the number of letters in η. The set of all words with
length k is denoted byXk. The set of all words including the empty word, ∅, is written
as X∗. Clearly X∗ forms a monoid under catenation. Any mapping c : X∗ → R

ℓ is
called a formal power series. The value of c at η ∈ X∗ is written as (c, η). Typically,
c is represented as the formal sum c =

∑

η∈X∗(c, η) η. For any language L ⊆ X∗,

its characteristic series is defined as char(L) =
∑

η∈L η. The collection of all formal

power series over X is denoted by R
ℓ〈〈X〉〉, while the set of polynomials over X is

designated by R〈X〉. Each of these sets forms an associative R-algebra under the
catenation (Cauchy) product and a commutative and associative R-algebra under
the shuffle product, that is, the R-bilinear mapping R

ℓ〈〈X〉〉 × R
ℓ〈〈X〉〉 → R

ℓ〈〈X〉〉
uniquely specified by the shuffle product of two words

(xiη) ⊔⊔ (xjξ) = xi(η ⊔⊔ (xjξ)) + xj((xiη) ⊔⊔ ξ),

where xi, xj ∈ X, η, ξ ∈ X
∗

and with η ⊔⊔ ∅ = η [5,13]. Finally, the left-shift operator
is defined as ξ−1 : X∗ → R〈X〉 such that ξ−1(η) = η′ when η = ξη′ with η′ ∈ X∗,
and 0 otherwise.

2.1. Rough Paths. The rough path theory presented here is based on the
treatment in [6, 11, 12]. A path on J , [0, T ] is a function U : J → R

m. Let

Dr , {0 < t1 < · · · < tr = T } be a partition of J , and D(J) denotes the set of all
finite partitions of J . The p-variation of a path U is

‖U‖p,J ,

(

sup
Dr∈D(J)

∑

tl∈Dr

|U(tl+1)− U(tl)|
p

)
1

p

.

Note that ‖U‖p,J = 0 only when U is constant, so a norm for the vector space

Vp(J) , {U : J → R
d : ‖U‖p,J < ∞} is ‖U‖Vp,J , ‖U‖p,J + supt∈J |U(t)|. It is

standard that when p = 1 and ‖U‖Vp,J < ∞, the path U can act as the integrator
for a Stieltjes type integral since U defines a function of bounded variation. In fact,
Fliess originally introduced his input-output operators as weighted sums of Stieltjes
iterated integrals [5]. Let ∆T , {(s, t) ∈ [0, T ]× [0, T ] : 0 ≤ s ≤ t ≤ T }, and define
the continuous map ω : ∆T → R such that

ω(s, τ) + ω(τ, t) ≤ ω(s, t)

and ω(τ, τ) = 0 for s ≤ τ ≤ t ∈ J . Throughout this paper, ω will be called a
ω-function. In rough path theory an ω-function is referred to as a control function.
However, that name is not adopted in this paper to avoid the obvious confusion
with system theory terminology. It is known that any positive linear combination
of ω-functions is an ω-function, and a convex function of an ω-function is also an
ω-function [6, Section 1.2]. If ω satisfies |U(t)− U(s)| ≤ ω(s, t) for U ∈ Vp(J), then

it can be verified that ‖U‖p,[s,t] ≤ ω(s, t)
1

p for all (s, t) ∈ ∆T . Moreover, ω provides a

reparametrization such that U becomes a 1/p-Hölder continuous path. In particular,
a natural ω-function for U ∈ V1(J) is ω(s, t) = ‖U‖1,[s,t] such that |U(t)− U(s)| ≤

‖U‖1,[s,t]. This mapping is additive in that ‖U‖1,[s,t] = ‖U‖1,[s,τ ] + ‖U‖1,[τ,t], and
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‖U‖1,[0,t] as a function of t is continuous. Thus, it has a finite 1-variation. Similarly

for U ∈ Vp(J), one has ω(s, t) = ‖U‖pp,[s,t].
Although rough path theory can be developed for paths taking values in a general

Banach space, E, here the focus is on the case where E = R
m+1 with the usual norm.

Moreover, rough paths are normally defined on the tensor space

T ((E)) = {a = (a0, a1, . . .) : an ∈ E⊗n, n ≥ 0} =

∞
⊕

n=0

E⊗n,

where E⊗n , span
R
{ei1 ⊗ ei2 ⊗ · · · ⊗ ein : i1, i2, . . . , in ∈ In, I = {0, 1, . . . , n}} is the

R-vector space of all multilinear forms of length n, and e0, e1, . . . , em is a basis for E.
It is known, however, that the space T ((E)) is isomorphic to R〈〈X〉〉. Thus, for each
c = (c0, c1, . . .) ∈ T ((E)) there corresponds a unique c =

∑

η∈X∗ (c, η)η ∈ R〈〈X〉〉

and vice-versa. Therefore, the entire development will be done using only R〈〈X〉〉.
The sum and product in T ((E)) are identified with the sum and Cauchy product of
formal power series. The space T ((E)) truncated to order n, denoted by T (n)(E),
is isomorphic to the R-vector space of all polynomials of degree n, R(n)〈X〉. Define
the R-algebra homomorphism πn : R〈〈X〉〉 → R

(n)〈〈X〉〉 such that c(n) = πn(c)
is the truncation of c to order n. Then, one can define an associative product of
c, d ∈ R

(n)〈〈X〉〉 as cd , πn(cd).
Let U ∈ V1(J). For every η ∈ X∗, denote by Eη[U ] the iterated Stieltjes integral

of U defined inductively by setting E∅[U ] = 1 and

Exiη′ [U ](t2, t1) =

∫ t2

t1

dUi(τ)Eη′ [U ](τ, t1),

where xi ∈ X and η′ ∈ X∗.
Definition 2.1. A multiplicative functional of degree n ≥ 1 is a continuous

map Pn[U ] : ∆T → R
(n)〈X〉 defined as Pn[U ](t2, t1) ,

∑

η∈Xk,k≤n Eη[U ](t2, t1) η that
satisfies

Pn[U ](t2, t1) = πn(Pn[U ](t2, τ)Pn[U ](τ, t1))

for t1 ≤ τ ≤ t2 and is referred to as Chen’s identity.
A notion of p-variation for Pn[U ] is given next.
Definition 2.2. The map Pn[U ] : ∆T → R

(n)〈X〉 is said to have finite total

ppp-variation if

sup
Dr∈D(J)

∑

tl∈Dr

|Eη[U ](tl, tl−1)|
p

|η| < ∞

when |η| ≤ n.
Lemma 2.3. [12, Proposition 3.3.2] Let Pn[U ] be a multiplicative functional of

order n. If Pn[U ] has finite total p-variation then for (s, t) ∈ ∆T

ω(s, t) =

n
∑

j=1

∑

η∈Xj

sup
Dr∈D(J)

∑

tl∈Dr

|Eη[U ](tl, tl−1)|
p

|η|

is a ω-function, and

‖Eη[U ](t, s)‖Vp(J) ≤ ω(s, t)
|η|
p .
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For paths with p-variation greater than 1, the idea is to make sense of the dif-
ferential dU . It is known for ordinary differential equations that by taking the limit
of the first order increment processes Exi

[U ](t, s) = {Ui(t) − Ui(s) : 0 ≤ s ≤ t},
i = 0, 1, . . . ,m, as the partition size goes to zero, one can obtain a useful charac-
terization of dU without ever computing them explicitly. Therefore, one may regard
the whole collection of first order increments as the differential dU when p = 1.
Employing Chen’s identity,

Eη[U ](t2, t1) = lim
r→∞
|Dr|→0

∑

tl∈Dr
η=η1η2

Eη1
[U ](tl, tl−1)Eη2

[U ](tl−1, t1), (2.1)

where |Dr| denotes the partition size. So all higher order increments are well defined
in terms of the first order increment process, i.e.,

sup
Dr∈D(J)

∑

tl∈Dr

|Eη[U ](tl, tl−1)|
p

|η| < ∞, ∀η ∈ X
∗

, (2.2)

where p = 1. To describe dU when p > 1, one needs higher order increments as well.
Observe that (2.2) is not satisfied even for |η| = 1 and p = 2, but the increments do
satisfy the weaker condition

sup
Dr∈D(J)

∑

tl∈Dr

|U(tl)− U(tl−1)|
p′

< ∞

for any p′ ≥ p. Thus, the iterated path integrals defined in (2.1) do converge in a
p-variation metric. Moreover, Lyons showed that if, in addition, U satisfies Chen’s
identity, then Eη[U ] is uniquely determined when η ∈ Xk, k ≥ ⌊p⌋ + 1 by {Eη[U ] :
|η| = 1, 2, . . . ⌊p⌋}.

Theorem 2.4. [11,12] Let p ≥ 1, and let Pn[U ] be a multiplicative functional of
order n with finite p-variation so that

‖Eη[U ](t, s)‖p,[s,t] ≤ ω(s, t)
|η|
p

for |η| ≤ n and some ω-function. If n ≥ ⌊p⌋ then Pn[U ] can be extended uniquely to
a finite p-variation multiplicative functional P [U ] ∈ R〈〈X〉〉. Moreover, there exist a
K > 0 such that for every η ∈ X∗ it follows that

‖Eη[U ]‖p,[s,t] ≤
Kω(s, t)

|η|
p

(

|η|
p

)

!
, ∀(s, t) ∈ ∆T . (2.3)

This result is known as the extension theorem, and it is the first fundamental theorem
of rough path theory. In this sense, p indicates how many iterated path integrals (or
higher order increments) are needed in order to have a well-posed integration theory.
A crucial result used in the proof of the extension theorem is the so-called neo-classical
inequality given in the next lemma.

Lemma 2.5. [9,11] For any p ≥ 1, n ∈ N and t1, t2 ≥ 0,

1

p

n
∑

i=0

t
i
p

1
(

i
p

)

!

t
n−i
p

2
(

n−i
p

)

!
≤

(t1 + t2)
n
p

(

n
p

)

!
.
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Let U = (U1, . . . , Um) ∈ Vp(J) and U0(t) , t. The signature (or Chen series)
associated with U is an element of R〈〈X〉〉 defined as

P [U ](t2, t1) =
∑

η∈X∗

Eη[U ](t2, t1) η.

Here all iterated integrals are in the Lyons sense. In particular, if

P [U ](t2, t1) = P [U ](t2, τ)P [U ](τ, t1), t1 ≤ τ ≤ t2 (2.4)

then P [U ] is said to be multiplicative. Identity (2.4) was originally given as a theorem
by Chen in [1] when p = 1. However, in rough path theory it is a purely algebraic
property that a path with arbitrary p-variation must satisfy in order to behave prop-
erly as an integrator.

Definition 2.6. A ppp-rough path is a multiplicative functional of degree ⌊p⌋ in
R

m having finite p-variation. The space of p-rough paths is denoted by Ωp(R
m).

Thus, a p-rough path is a continuous mapping from ∆T to R
(⌊p⌋)〈X〉, which is a

multiplicative functional of degree ⌊p⌋ and has finite total p-variation.
An important class of rough paths is the subset of all rough paths that are limits

of 1-rough paths in the p-variation metric. They are known as geometric rough paths,
and the set of all such paths is denoted by GΩp(R

m). This set constitutes the input
class for Fliess signature operators as defined later in Section 3. The goal is then
to describe a Fliess signature operator that maps a p-rough path to another p-rough
path, thus allowing one to drive a second Fliess signature operator with this signal.

2.2. Fliess Operators. A Fliess operator is formally defined in terms of the
signature of a path as follows.

Definition 2.7. Let c ∈ R
ℓ〈〈X〉〉 and U ∈ GΩp(R

m). The corresponding Fliess

operator driven by U is

Fc[U ] = (c, P [U ]) ,
∑

η∈X∗

(c, η)(P [U ], η) =
∑

η∈X∗

(c, η)Eη[U ].

Note in this setting that the output path generated by a Fliess operator is Y =
∫

dt Fc(U) = Fx0c[U ]. The integral only coincides with Lebesgue integration when
p = 1. This is analogous to generating a Wiener process by integrating white Gaus-
sian noise. This reinforces the fact that a Fliess operator output is obtained as an
approximation of smooth signals. A condition must be imposed on c in order to give
some notion of convergence for a Fliess operator.

Definition 2.8. A series c ∈ R
ℓ〈〈X〉〉 is called Gevrey of degree rrr if

|(c, η)| ≤ KM |η|(|η|!)r, η ∈ X∗

for some K,M > 0 and r ≥ 0. The set of all such series is denoted by R
ℓ
G(r)〈〈X〉〉.

Theorem 2.9. Let c ∈ R
ℓ
G(1/p′)〈〈X〉〉. If U ∈ GΩp(R

m) with p < p′ and Y =

Fx0c[U ], then ‖Fc[U ]‖Vp(J) < ∞. Under the same assumptions, if p = p′ and M(m+

1)ω(0, t)1/p < 1 then ‖Fc[U ]‖Vp(J) < ∞.

Thus, given an input in GΩp(R
m), each output component generated by Fc is in

Vp. But this means that a cascade interconnection is still not well-posed since being
in Vp does not imply that the output is a p-rough path.

When Fc and Fd with c ∈ R
ℓ〈〈X〉〉 and d ∈ R

m〈〈X〉〉 are interconnected in a
cascade fashion, the composite system always has at least a formal Fliess operator
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representation in terms of the composition product [7]. It is convenient to first describe
this product using a family of mappings

Dxi
: R〈〈X〉〉 → R〈〈X〉〉 : e 7→ x0(di ⊔⊔ e),

where i = 0, 1, . . . ,m and d0 := 1. Let D∅ be the identity map on R〈〈X〉〉. Such maps
can be composed in an obvious way so that Dxixj

:= Dxi
Dxj

provides an R-algebra.
Definition 2.10. [7] The composition product of η ∈ X∗ and d ∈ R

m〈〈X〉〉
is

η ◦ d , (xikxik−1
· · ·xi1) ◦ d = Dxik

Dxik−1
· · ·Dxi1

(1) = Dη(1).

For any c ∈ R
ℓ〈〈X〉〉,

c ◦ d ,
∑

η∈X∗

(c, η) η ◦ d.

The composition product is associative and satisfies Fc ◦ Fd = Fc◦d.

3. Fliess Signature Operators. The goal of this section is to explicitly de-
scribe the mapping between the input signature and the output signature of a Fliess
operator. To achieve this objective, a device known as a transduction is employed.

Definition 3.1. [4, 10] Let X and W be two alphabets. Any R-linear mapping
t : R〈〈X〉〉 → R〈〈W 〉〉 is called a transduction. It is completely specified by

t(η) =
∑

ξ∈W∗

(t(η), ξ)ξ, η ∈ X∗.

With any t one can canonically associate a series in R〈〈X ⊗W 〉〉, namely

t̂ =
∑

η∈X∗

η ⊗ t(η) =
∑

η∈X∗, ξ∈W∗

(t(η), ξ) η ⊗ ξ.

Given the fact that t̂ is still a formal power series in the usual sense, transductions
have a well-defined notion of Gevrey degree.

Definition 3.2. Let X = {x0, x1, . . . , xm} and W = {w0, w1, . . . , wℓ} . A
transduction tc : R〈〈X〉〉 → R〈〈W 〉〉 is said to be associated with c ∈ R

ℓ〈〈X〉〉 if it
can be written as

tc(η) =
∑

ξ∈W∗

(ξ ◦ c, η) ξ, η ∈ X∗.

The corresponding series t̂c ∈ R〈〈X ⊗W 〉〉 is then t̂c =
∑

ξ∈W∗ (ξ ◦ c)⊗ ξ.

Definition 3.3. For c ∈ R
m〈〈X〉〉, define the Fliess signature operator as

Sc : R〈〈X〉〉 → R〈〈W 〉〉

: P [U ] 7→ P [Y ] =
∑

η∈X∗

tc(η)(P [U ], η).

Observe then that, as expected,

Sc(P [U ]) =
∑

η∈X∗, ξ∈W∗

ξ (ξ ◦ c, η)Eη[U ] =
∑

ξ∈W∗

ξ Eξ[Fc[U ]] =
∑

ξ∈W∗

ξ Eξ[Y ] = P [Y ],
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where Y = Fx0c[U ]. It is also clear from the above calculation that

Eξ[Y ] =
∑

η∈X∗

(ξ ◦ c, η)Eη[U ], ξ ∈ W ∗. (3.1)

Fliess signature operators as defined above are purely algebraic objects. It is
necessary therefore to show that Sc(P [U ]) is a proper p-rough path when U is a
p-rough path. But first one needs to make sense of Eξ[Y ], ξ ∈ W ∗, by showing
that the series (3.1) converges. Then, it will be proved that P [Y ] = Sc(P [U ]) is a
multiplicative functional of order ⌊p⌋. These two steps provide the means to show
that Eξ[Y ], ξ ∈ W ∗, satisfies (2.3). In order to show that the series defining Eξ[Y ] is
well-defined, a characterization of the Gevrey degree of the series ξ ◦ c is given in the
next theorem.

Theorem 3.4. Let c ∈ R
ℓ
G(1/p)〈〈X〉〉 with growth constants Kc,Mc > 0 and

p ≥ 1. Then for any ξ ∈ W ∗ it follows that ξ ◦ c ∈ RG(1/p)〈〈X〉〉. Specifically,

|(ξ ◦ c, θ)| ≤ (Kk
cM

−|ξ|
c )(2kMc)

|θ|(|θ|!)
1

p ,

for all θ ∈ X∗ such that |θ| ≥ |ξ| and where k = |ξ| − |ξ|x0
. Otherwise, (ξ ◦ c, θ) = 0.

A straightforward consequence of this theorem is the following corollary, which
says that Eξ[Y ], ξ ∈ W ∗, is well-defined.

Corollary 3.5. Let c ∈ R
ℓ
G(1/p′)〈〈X〉〉. If U ∈ GΩp(R

m) with p ≤ p′ and

Y = Fx0c[U ] then

‖Eξ[Y ]‖Vp(J) < ∞, ξ ∈ W ∗.

The next lemma is key to showing that P [Y ] is multiplicative of order ⌊p⌋.
Lemma 3.6. Let c ∈ R

ℓ
G(1/p′)〈〈X〉〉. If U ∈ GΩp(R

m) with p ≤ p′ and Y =

Fx0c[U ] then

Eξ[Y ](t2, t1) =
∑

ξ=ξ1ξ2

Eξ1 [Y ](t2, τ)Eξ2 [Y ](τ, t1),

where ξ ∈ W ∗ and t1 ≤ τ ≤ t2.
Theorem 3.7. Let c ∈ R

ℓ
G(1/p′)〈〈X〉〉. If U ∈ GΩp(R

m) with p ≤ p′ and Y =

Fx0c[U ] then P⌊p⌋[Y ] is a multiplicative functional of order ⌊p⌋.
The next lemma is needed in order to show that Eξ[Y ] satisfies (2.3).
Lemma 3.8. Let c ∈ R

ℓ
G(1/p′)〈〈X〉〉. If U ∈ GΩp(R

m) with p ≤ p′ and Y =

Fx0c[U ] then there exist an ω-function such that

‖Eξ[Y ]‖p,[t1,t2] ≤ ω(t1, t2)
|ξ|
p , ξ ∈ W ∗, |ξ| ≤ ⌊p⌋.

Lemma 3.9. Let c ∈ R
ℓ
G(1/p′)〈〈X〉〉. If U ∈ GΩp(R

m) with p ≤ p′ and Y =

Fx0c[U ] then

‖Eξ[Y ]‖p,[t1,t2] ≤
ω(t1, t2)

|ξ|
p

(

|ξ|
p

)

!
, 0 ≤ t1 ≤ t2, ξ ∈ W ∗.

It is thus trivial using Theorem 3.7 and Lemma 3.9 to conclude that P [Y ] is indeed
a p-rough path. Furthermore, the next lemma gives a bound for the summation of
iterated integrals of the same order with arbitrary p-variation inputs.
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Lemma 3.10. Let c ∈ R
ℓ
G(1/p′)〈〈X〉〉. If U ∈ GΩp(R

m) with p ≤ p′ and Y =

Fx0c[U ] then for any k ≥ 1

∥

∥

∥

∥

∥

∥

∑

ξ∈Wk

Eξ[Y ]

∥

∥

∥

∥

∥

∥

p,[t1,t2]

≤ (m+ 1)k−1ω(t1, t2)
k
p

k!
, 0 ≤ t1 ≤ t2.

Finally, the main result of the section is given below.
Theorem 3.11. Let c ∈ R

ℓ
G(1/p′)〈〈X〉〉. If U ∈ GΩp(R

m) with p ≤ p′ then the

Fliess signature operator Sc maps GΩp(R
m) into GΩp(R

ℓ).

4. Cascade Interconnections with Rough Path Inputs. In light of Theo-
rem 3.11, the output of a Fliess signature operator driven by an p-rough path input
U can be fed into a second Fliess signature operator as long as its generating series
is in R

m
G(1/p)〈〈X〉〉. The cascade is best described algebraically by a composition of

transductions.
Definition 4.1. For c ∈ R

ℓ〈〈X〉〉 and d ∈ R
m〈〈X〉〉, the composition of

transductions tc and td is

tc ◦ td =
∑

η∈X∗,ξ∈W∗

(ξ ◦ c, η) η ◦ d⊗ ξ.

Lemma 4.2. For transductions t̂c =
∑

ξ∈W∗ (ξ ◦ c)⊗ ξ and t̂d =
∑

η∈X∗ (η ◦d)⊗ η
it follows that tc ◦ td = tc◦d.

Using the composition of transductions, the following theorem is easily proved.
Theorem 4.3. The cascade of two Fliess signature operators Sc and Sd is de-

scribed by Sc ◦ Sd = Sc◦d.
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[11] T. Lyons, M. Caruana and T. Lévy, Differential equations driven by rough paths, in École
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