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Abstract. The goal is to prove the existence of smooth universal inputs for smooth systems
in the context of formal power series and Fliess operators. That is, nonlinear operators described
by functional series which are indexed by words over a noncommutative alphabet. Their generating
series are therefore specified in terms of noncommutative formal power series. The idea is to provide
a more direct and elementary existence argument than is currently available, thereby making this
result more accessible to researchers with different backgrounds. In addition, this approach will
illustrate how the behavior of smooth systems can be described by formal power series, which have
traditionally been used for analytic systems.
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1. Introduction. A useful concept in observability theory and parameter iden-
tification is the property of state distinguishability. Two states p and q of a given state
space system are said to be distinguishable if there exists an input u which produces
distinct outputs when the system is initialized, respectively, at p and q. In this case,
u is said to distinguish p and q. An input u is a universal input if u distinguishes
all distinguishable pairs p and q. Aside from its intrinsic appeal as a theoretical con-
cept, the existence of universal inputs has practical applications for identification in
systems biology [12] and for path planning [7, 8].

The first results on the existence of universal inputs appeared in 1977 for bilinear
systems [4]. Analogous results were established shortly thereafter in [6] for discrete-
time systems and analytic continuous-time systems with compact state spaces. This
analysis was extended to analytic continuous-time systems without the compactness
condition in [10]. The main results in [10] were then proved in [13] by alternative
methods in the context of input-output equations. In [9], the existing theorems on
universal inputs for analytic systems were extended to show that there are smooth
inputs (that is, C∞ functions) that are universal for all finite dimensional analytic
systems. A counterexample was provided to show that there does not exist such an
analytic universal input for all finite dimensional analytic systems. The same example
can also be used to show that there does not exist a smooth universal input for all
finite dimensional smooth systems.

The existence of universal inputs for a given smooth system was established in
the seminal paper [1]. The main focus of [1] was on smooth stabilization. Using
sophisticated methods from differential geometry, it was shown that for a generic
feedback function u(x), a certain controllability property holds for the linearized sys-
tems around each regular trajectory. This led to important results concerning smooth
stabilization. The existence of universal inputs was obtained as a corollary to these
main results. In fact, the primary result in this regard was in the context of observa-
tion spaces, which implies the existence of smooth universal inputs.
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The main goal of this paper is to prove the existence of smooth universal inputs
for smooth systems in the context of formal power series and Fliess operators. That
is, nonlinear operators described by functional series which are indexed by words over
a noncommutative alphabet [2]. Their generating series are therefore specified in
terms of noncommutative formal power series. The idea is to provide a more direct
and elementary existence argument, thereby making this result more accessible to
researchers with different backgrounds. In addition, this approach will illustrate how
the behavior of smooth systems can be described by formal power series (which have
traditionally been used for analytic systems). The approach is based on methods for
formal Fliess operators in [5].

The paper is organized as follows. In the next section some mathematical pre-
liminaries on Fliess operators and state distinguishability are briefly reviewed. The
concept of zero-distinguishability is introduced in the subsequent section. It is uti-
lized in Section 4 in order to define a set of generic input jets in terms of formal
Fliess operators. In the next section, this concept is used to show the existence of
smooth universal inputs. Given the space limitations, some of the proof details will
be deferred to a future publication. The conclusions of the paper are summarized in
the final section.

2. Preliminaries.

2.1. Formal Power Series and Fliess Operators. A finite nonempty set of
noncommuting symbols X = {x0, x1, . . . , xm} is called an alphabet. Each element of
X is called a letter, and any finite sequence of letters from X, η = xi1 · · ·xik , is called
a word over X. The length of η, |η|, is the number of letters in η, while |η|xi

is the
number of times the letter xi appears in η. The set of all words with length k is
denoted by Xk. The set of all words including the empty word, ∅, is designated by
X∗. It forms a monoid under catenation. Any mapping c : X∗ → R

ℓ is called a formal
power series. The value of c at η ∈ X∗ is written as (c, η) and called the coefficient
of η in c. The collection of all formal power series over X is denoted by R

ℓ〈〈X〉〉. It
forms an associative R-algebra under the catenation product and a commutative and
associative R-algebra under the shuffle product [2].

One can formally associate with any series c ∈ R
ℓ〈〈X〉〉 a causalm-input, ℓ-output

operator, Fc, in the following manner. Let p ≥ 1 and t0 < t1 be given. For a Lebesgue
measurable function u : [t0, t1] → R

m, define ‖u‖p = max{‖ui‖p : 1 ≤ i ≤ m}, where
‖ui‖p is the usual Lp-norm for a measurable real-valued function, ui, defined on [t0, t1].
Let Lm

p [t0, t1] denote the set of all measurable functions defined on [t0, t1] having a
finite ‖ · ‖p norm and Bm

p (R)[t0, t1] := {u ∈ Lm
p [t0, t1] : ‖u‖p ≤ R}. Assume C[t0, t1]

is the subset of continuous functions in Lm
1 [t0, t1]. Define iteratively for each η ∈ X∗

the map Eη : Lm
1 [t0, t1] → C[t0, t1] by setting E∅[u] = 1 and letting

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where xi ∈ X, η̄ ∈ X∗, and u0 = 1. The input-output operator corresponding to c is
the Fliess operator

Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0)(2.1)

[2].
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The cascade connection of two Fliess operators is known to always yield an input-
output system having a Fliess operator representation (see the citations in [5]). To
describe its generating series explicitly, let d ∈ R

m〈〈X〉〉 and define the family of
mappings

Dxi
: R〈〈X〉〉 → R〈〈X〉〉 : e 7→ x0(di ⊔⊔ e),

where i = 0, 1, . . . ,m and d0 := 1. Assume D∅ is the identity map on R〈〈X〉〉. Such
maps can be composed in the obvious way so that Dxixj

:= Dxi
Dxj

. The composition
product of a word η ∈ X∗ and a series d ∈ R

m〈〈X〉〉 is defined as

(xikxik−1
· · ·xi1

︸ ︷︷ ︸

η

) ◦ d = Dxik
Dxik−1

· · ·Dxi1
(1) = Dη(1).

For any c ∈ R
ℓ〈〈X〉〉 the definition is extended linearly as

c ◦ d =
∑

η∈X∗

(c, η) η ◦ d.

In which case, for any c ∈ R
ℓ〈〈X〉〉 and d ∈ R

m〈〈X〉〉, the identity Fc ◦ Fd = Fc◦d is
satisfied.

Convergence of the series (2.1) defining Fc can be guaranteed by introducing
certain growth restrictions on the coefficients of c. Otherwise, Fc can be interpreted
only as a mapping between the generating series for a formal input, cu ∈ R

m[[X0]],
and the generating series for the formal output, cy ∈ R

ℓ[[X0]], where X0 = {x0}.
Such a mapping can be described explicitly using the composition product. Namely,
the class of formal Fliess operators is defined as the set of mappings

F :=
{
c◦ : Rm[[X0]] → R

ℓ[[X0]] : cu 7→ cy = c ◦ cu, c ∈ R
ℓ〈〈X〉〉

}
.(2.2)

It was shown in [5] that the generating series, c, of a formal Fliess operator is unique.

2.2. State Distinguishability. Consider a smooth system

ẋ = g0(x) +
m∑

i=1

gi(x)ui,

y = h(x),

(2.3)

where for each t, x(t) ∈ M, which is a smooth, second countable manifold of dimension
n, the output map h : M → R is a smooth function, and g0, g1, . . . , gm are smooth
vector fields defined on M. Inputs of the system are measurable essentially bounded
maps u : [0, T ] → R

m defined on [0, T ] for some T > 0. Let ϕ(t, x0, u) denote the
trajectory of (2.3) corresponding to an input u defined on some interval [0, b) for b > 0
and an initial state x0, and let y(t, x0, u) = h(ϕ(t, x0, u)).

Let p, q ∈ M and take an input u. Then p and q are said to be distinguishable
by u, denoted by p 6∼u q, if y(t, p, u) 6= y(t, q, u) on the common interval where both
functions are defined. Two states p and q are distinguishable, denoted by p 6∼ q, if
p 6∼u q for some input u. Finally, p and q are called indistinguishable, denoted by
p ∼ q, when p and q cannot be distinguished by any input u. The following lemma is
easy to prove.

Lemma 2.1. Let p, q ∈ M. Then p 6∼ q if and only if there exists a polynomial
input u such that p 6∼u q.
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An input function u is called a universal input if p 6∼u q whenever p 6∼ q. The goal
is to show that there always exists a smooth universal input for the smooth system
(2.3). For this purpose, consider an augmented version of (2.3):

ẋ = g0(x) +
m∑

i=1

gi(x)ui,

ż = g0(z) +
m∑

i=1

gi(z)ui,

yo = h(x)− h(z).

(2.4)

It is evident that (2.3) admits a universal input if and only if there exists some input
u such that for (2.4), (p, q) 6∼u (p, p) whenever (p, q) 6∼ (p, p). This motivates the
study of zero-distinguishability as described next.

3. Zero-Distinguishability. Consider system (2.3) and assume that there ex-
ists some po ∈ M such that y(t, po, u) = 0 for all t ≥ 0 and all input functions u. An
input u is called a zero-distinguishable universal input if p 6∼u po for every p 6∼ po. It
can be seen that u is a zero-distinguishable universal input for (2.4) if and only if u
is a universal input for (2.3). For any µ = (µ0, µ1, . . .) ∈ R

m,∞ (which is taken to be
R

m × R
m × R

m × · · ·), define for each i ≥ 1,

ψi(p, µ) =
di

dti

∣
∣
∣
∣
t=0+

h(ϕ(t, p, u)),

where u is any C∞ input with initial values u(j)(0) = µj , j ≥ 0. Observe that the
functions ψi(p, µ) can be expressed as a polynomial in the variables (µ0, µ1, . . . , µi−1).
Define ψ0(p, µ) = h(p).

For system (2.3) and each p ∈ M, define the series

cp =
∑

η∈X∗

(cp, η)η,

where

(cp, xi1xi2 · · ·xik) = Lgik
· · ·Lgi2

Lgi1
h(p),

and the Lie derivative is given by Lgi : h 7→ (∂h/∂z) ·gi. If (2.3) is an analytic system,
then the series cp is a convergent series for each p ∈ M (see Lemma 4.2 in [11]).
However, for a smooth system (2.3), the series cp is not necessarily convergent. By
Theorem 7 of [5], if cp 6= 0, then ψi(p, µ) 6= 0 for some i and (µ0, µ1, . . . , µi−1). It then
follows that y(·, p, u) 6= 0, where u is any input with the initial values u(j)(0) = µj for
j ≤ i−1. This implies that p 6∼ po. On the other hand, if cp = 0, then it is immediate
that

Lgik
· · ·Lgi2

Lgi1
h(p) = 0

for all choices of i1, i2, . . . ik and all k ≥ 0. If system (2.3) is analytic, this then implies
that y(·, p, u) = 0 for all input u, i.e., p ∼ po. However, this property may fail for a
smooth system.

Example 3.1. Consider the smooth system

ẋ = xu, y = h(x),
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where h(x) = e
− 1

(x−1)2 if x > 1, and h(x) = 0 if x ≤ 1. Clearly, cpo
= 0 when po = 0

and y(t, 0, u) = 0, t ≥ 0 for all u. In addition, Li
g1
h(1) = 0 for all i ≥ 0, and hence

cp = 0 when p = 1. But for u(t) = 1
1+t

, it holds that ϕ(t, 1, u) = 1 + t, and hence,

y(t, 1, u) = e−
1
t2 , t > 0. Thus, p 6∼u po even though cp = cpo

= 0.
In this work, the following regularity condition will be imposed on (2.3) when

considering the zero-distinguishability property.

Assumption A0. For each point p ∈ M and any polynomial input u such that

dk

dtk

∣
∣
∣
∣
t=0+

h(ϕ(t, p, u)) = 0, k ≥ 0,(3.1)

it follows that y(t, p, u) ≡ 0.

4. Zero-Distinguishable Universal Input Jets. For any µ ∈ R
m,∞, define

cu(µ) =
∞∑

i=0

µix
i
0.

In light of (2.2), it follows for system (2.3) that ψi(p, µ) = (cp ◦ cu(µ), xi0), i ≥ 0.
Assume Rm,∞ is endowed with the product topology whose basis of open sets consists
of all sets of the form U0 ×U1 ×U2 × · · ·, where each Ui is an open subset of Rm, and
Ui = R

m for all but finitely many i. With this topology, Rm,∞ is a Baire space, and
thus, for a sequence {Ui} of open dense subsets of Rm,∞,

⋂

i Ui is a dense subset of
R

m,∞. A subset U of Rm,∞ is called a generic set if U is a countable intersection of
open dense subsets of Rm,∞.

Consider the subset J of Rm,∞ defined by

J = {µ ∈ R
m,∞ : cp ◦ cu(µ) 6= 0 ∀ p ∈ M1},

where M1 is the subset of M consisting of all states that are distinguishable from po,
that is,

M1 = {p ∈ M : cp 6= 0}.

If cp = 0, then (3.1) holds for all k and all smooth input u. By Assumption A0,
p ∼ po. On the other hand, suppose p ∼ po. Then y(t, p, u) ≡ 0 (on its interval of
definition) for all smooth inputs u, and hence, cp ◦ cu(µ) = 0 for all µ ∈ R

m,∞. By
the uniqueness property, cp = 0. Therefore,

M1 = {p ∈ M : p 6∼ po}.

It is evident that µ ∈ J if and only if for each p 6∼ po, there is some i such that
ψi(p, µ) 6= 0. Moreover, for each µ ∈ J , if u ∈ C

∞ is a smooth function with
u(i)(0) = µi for i ≥ 0, then u is a zero-distinguishability universal input. By Borel’s
Theorem, there is always such an input function for each µ ∈ J . The elements in J
will be referred to as zero-distinguishable universal input jets.

Theorem 4.1. For system (2.3), J is a generic subset of Rm,∞.
Below some technical results required for the proof of this theorem are presented.

For each subset D of M1, define

JD = {µ ∈ R
m,∞ : cp ◦ cu(µ) 6= 0 ∀ p ∈ D}.
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Proposition 4.2. If D is a compact subset of M1, then JD is open and dense
in R

m,∞.
The next result is a consequence of the fact that M is second countable.
Lemma 4.3. There exist a sequence of compact subsets of M1, denoted by {Di},

such that M1 =
∞⋃

i=1

Di.

Observe that Theorem 4.1 follows from Proposition 4.2 in conjunction with
Lemma 4.3. That is, if M1 =

⋃

iDi, where Di is compact, it then holds that
J =

⋂

i JDi
, and each JDi

is open and dense. It will then follow that J is generic.
Thus, to prove Theorem 4.1, it is sufficient to prove Proposition 4.2.

For each given µ = (µ0, µ1, . . .) ∈ R
m,∞, (cp ◦ cu(µ), x

i
0) depends only on

(µ0, . . . , µi−1). For each ν = (ν0, . . . , νk−1) ∈ R
mk, let [cp ◦ cu(ν)]k denote the vector

(
(cp ◦ cu(µ), ∅), (cp ◦ cu(µ), x0), . . . , (cp ◦ cu(µ), x

k
0)
)
,

where µ ∈ R
m,∞ is any extension of ν in the sense that µi = νi for 0 ≤ i ≤ k− 1. For

a subset D ⊆ M and k ≥ 0, let

J k
D = {ν ∈ R

mk : [cp ◦ cu(ν)]k 6= 0 ∀ p ∈ D}

(which is not assumed to be nonempty a priori). Let ν ∈ R
mk. Then µ is a finite

extension of ν if µ ∈ R
mj for some j ≥ l such that µi = νi for 0 ≤ i ≤ k − 1. For a

compact subset D of M, consider the following.
Lemma 4.4. Assume that D ⊆ M is compact and that J s

D 6= ∅ for some s ≥ 1.
Then, for any k ≥ 1 and any ν ∈ R

mk, there exists some K and a finite extension µ
of ν such that µ ∈ JK

D . 2

Next, a result stronger than Lemma 4.4 is established in that it is no longer an a
prior requirement that J s

D be nonempty for some s.
Lemma 4.5. Let D ⊆ M1 be compact. Then for any j ≥ 1 and νj = (ν0, . . . , νj−1) ∈

R
mj, there exists a finite extension µk of νj such that µk ∈ J k

D. 2

Sketch of the proof of Proposition 4.2. Let D be a compact subset ofM1. To show
the density property of JD, let ν = (ν0, ν1, . . .) ∈ R

m,∞, and letW be a neighborhood
of ν. Without loss of generality, assume that

W =W0 ×W1 × · · · ×Wl−1 × R
m × R

m × · · · ,

where for each 0 ≤ i ≤ l− 1, Wi is an open subset of Rm. By Lemma 4.5, there exists
a finite extension µN of νl := (ν0, . . . , νl−1) such that µN ∈ JN

D . Note that for every
extension σ ∈ R

m,∞ satisfying σi = µi for 0 ≤ i ≤ N − 1, it holds that σ ∈ JD and
σ ∈W . This shows that W ∩ JD 6= ∅.

To show that JD is open, let ν = (ν0, ν1, . . .) ∈ JD. Then for each p ∈ D, there
exists some ip such that

[
cp ◦ cu(ν

ip)
]

ip
6= 0. By continuity, there exist a neighborhood

Np such that
[
cq ◦ cu(νip)

]

ip
6= 0 for each q ∈ Np. Applying the compactness property

of D, one sees that there exists an N such that
[
cq ◦ cu(ν

N )
]

N
6= 0 for all q ∈ D.

Again, by continuity, for each q ∈ D, there exist a neighborhood Bq ⊆ M1 of q
and a neighborhood Uq,νN ⊆ R

m×N such that
[
cq′ ◦ cu(σ

N )
]

N
6= 0 for all q′ ∈ Bq

and all σN ∈ Uq,νN . Using the compactness property of D once more, one sees that

D ⊆
⋃L

i=1Bqi for some q1, q2, . . . qL. Let UνN =
⋂L

i=1 Uqi,νN . Since each Uqi,νN is
open, UνN is an open subset of Rm×N . Moreover, UνN ⊆ JN

D . Finally, the proof is
completed by letting U = UνN ×R

m,∞. Note that U is an open set containing ν since
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UνN is an open set containing νN . For each σ ∈ U , the restriction σN of σ is in UνN ,
and hence σN ∈ JN

D . This implies that σ ∈ JD. Therefore, U ⊆ JD, and ν is an
interior point of JD.

5. Universal Smooth Inputs. For each T > 0, consider C∞[0, T ], the set of
smooth functions from [0, T ] to R

m, endowed with the Whitney topology. Note that
this is a finer topology than the subspace topology induced from C0[0, T ]. Since
C∞[0, T ] is a Baire space (see e.g. [3]), a generic subset of C∞[0, T ] is dense.

Given system (2.3), define for T > 0

ΩT
o = {u ∈ C∞[0, T ] : p 6∼u po ∀ p ∈ M1}.

If µ ∈ J , then the corresponding u is an element of ΩT
o . Hence, as a consequence of

Theorem 4.1, ΩT
o 6= ∅. However, one can prove the following stronger result.

Theorem 5.1. Consider system (2.3) under Assumption A0. Then for each
T > 0, ΩT

o is a generic subset of C∞[0, T ].
To prove Theorem 5.1, define for any S ⊆ M1,

ΩT
o (S) = {u ∈ C∞[0, T ] : p 6∼u po ∀ p ∈ S}.

Lemma 5.2. For each compact subset D of M1 and each T > 0, ΩT
o (D) is open

and dense in C∞[0, T ].
Proof. Consider a compact subset D of M1, and let T > 0 be given. Suppose

u ∈ C∞[0, T ], and let W be a neighborhood of u. Without loss of generality, one may
assume that

W =
{

v ∈ C∞[0, T ] : ‖v(i) − u(i)‖∞ < r, 0 ≤ i ≤ J − 1
}

for some J ≥ 1 and r > 0. Let µ ∈ R
m,∞ be such that µi = u(i)(0). By Lemma 4.5,

there exists some K ≥ J and a finite extension νK of µJ such that νK ∈ JK
D . It can

be shown that there exists some w0 ∈ C∞[0, T ] such that:

(i) w
(i)
0 (0) = 0 for all i ≤ J − 1;

(ii) w
(i)
0 (0) = νi − µi for all J ≤ i ≤ K − 1;

(iii) ‖w
(i)
0 ‖∞ < δ for 0 ≤ i ≤ J − 1.

Let w(t) = u(t) + w0(t). Then w ∈ W, and with σi = w(i)(0), it holds that σ ∈ JD.
Consequently, w ∈ W. This shows that ΩT

o (D) is dense.
To show that ΩT

o (D) is open, let u ∈ ΩT
o (D). Then for each p ∈ D, y(tp, p, u) 6=

0 for some tp ∈ [0, T ]. By continuity, there exist a neighborhood Np of p and a
neighborhood Up of u in C0[0, T ] such that y(tp, q, v) 6= 0 for all q ∈ Np and v ∈ Up.
Again, by the compactness of D, one sees that there exist some p1, . . . , pN such that

D =

N⋃

i=1

Npi
. Let O =

⋂N
i=1 Upi

. Then, for each q ∈ D and each v ∈ O, y(tpi
, q, v) 6= 0

for some i. Hence, O ⊆ ΩT
o (D). Since O is open in C0[0, T ], O is open in C∞[0, T ].

This shows that ΩT
o (D) is open in C∞[0, T ].

Theorem 5.1 facilitates the characterization of universal inputs for distinguisha-
bility. Consider system (2.3) under the following assumption.

Assumption A1. For each pair of points (p, q) ∈ M×M and any polynomial
input u such that

dk

dtk

∣
∣
∣
∣
t=0+

h(ϕ(t, p, u)) =
dk

dtk

∣
∣
∣
∣
t=0+

h(ϕ(t, q, u)), k ≥ 0,



8 W. S. GRAY AND Y. WANG

it follows that p ∼u q.
For system (2.3), define for T > 0,

ΩT = {u ∈ C∞[0, T ] : p 6∼u q ∀ (p, q) such that p 6∼ q}.

The following corollary is a consequence of Theorem 5.1.
Corollary 5.3. Consider system (2.3) under Assumption A1. Then for each

T > 0, ΩT is a generic subset of C∞[0, T ].

6. Conclusions. A proof for the existence of smooth universal inputs for a given
smooth system was outlined in terms of formal power series and Fliess operators. The
methodology is more direct in many ways than the existing proof and gives additional
insight into this fundamental result.
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