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Abstract. This paper examines the relationship between the dynamics of large networks and
of their smaller factor-networks (factors) obtained through the factorization of the network's graph
representation. We speci�cally examine dynamics of networks which have Z-matrix state matrices.
We perform a Cartesian product decomposition on its network structure producing factors which
also have Z-matrix dynamics. A factorization lemma is presented that represents the trajectories of
the large network in terms of the factors' trajectories. An interval matrix lemma provides families
of network dynamics whose trajectories are bounded by the interval bounds' factors' trajectories.
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1. Introduction. Complex dynamic networks are an integral part of the tech-
nological world with examples including the internet, power grids, and communication
networks, as well as in the world at large such as biological and chemical systems and
social networks. An explosion of research in the area of network systems has eventu-
ated [2, 5, 8]. In parallel, Z-matrices are used to model synchronization in networks
[10], population migration [6], Markov processes, and supply and demand in economic
systems [1].

Z-matrices also appear in the discretization of di�erential operators. An exam-
ple is the discretization of di�usion [10] and advection [3] dynamics which generate
the in-degree and out-degree Laplacian matrix respectively, and both of which are
Z-matrices. The in-degree Laplacian matrix forms the basis of consensus models.
These models are e�ective for both distributed information-sharing and control of
networked, multi-agent systems in settings such as multi-vehicle control, formation
control, swarming, and distributed estimation; see, for example, [12, 15].

In this work we examine large networks which are Cartesian products of smaller
factor-networks (factors). We present a factorization lemma which represents the
larger network trajectories in terms of the factors' trajectories, provided certain ini-
tial conditions are met. This result is an extension of the related results on Cartesian
products over Laplacian-based simple networks for a constrained set of initial con-
ditions by Nguyen and Mesbahi [11]. We extend the factorization lemma to both
non-decomposable networks and arbitrary nonnegative initial conditions, bounding
the large network trajectories with the factors' trajectories.

The organization of the paper is as follows. We begin by introducing relevant
background material pertaining to graphs, Cartesian products and Kronecker prod-
ucts. We introduce the Z-matrix state dynamics. Interval matrices are used to in-
troduce families of Z-matrices with similar trajectories. The Cartesian product over
Z-matrices is introduced as a method to decompose large Z-matrix dynamics to smaller
Z-matrix factor dynamics. The paper culminates in the presentation of two factor-
ization lemmas. The �rst lemma allows perfect characterization of the larger network
trajectories in terms of the factors' unforced and forced trajectories. The second
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lemma presents a family of larger network trajectories which are bounded by factors'
trajectories.

2. Background. We provide a brief background on constructs and models that
will be used in this paper.

For column vector v ∈ Rp, vi or [v]i denotes the ith element. The column vector
ei, has 1 in its ith row and 0, otherwise. For matrix M ∈ Rp×q, [M ]ij denotes
the element in its ith row and jth column. A matrix M is nonnegative (positive),
denoted M ≥ 0 (M > 0) if all entries of M are nonnegative (positive). Further,
M ≥ N (M > N) is equivalent to M −N ≥ 0 (M −N > 0). The Kronecker product
of matrices A and B, is denoted by A⊗B and the Kronecker sum of square matrices
C ∈ Rn×n and D ∈ Rm×m de�ned and denoted as C ⊕D := Im ⊗ C + D ⊗ In. The
matrix exponential, denoted as eF for a square matrix F , of a Kronecker sum has the
attractive distributive property that eC⊕D = eC ⊗ eD.

2.1. Graphs. A weighted graph G = (V,E,W ) is characterized by a node set V
with cardinality n, an edge set E comprised of ordered pairs of nodes with cardinality
m, and a weight set W with cardinality m. The adjacency matrix is an n× n matrix
with [A(G)]ij = wij ∈ W when (j, i) ∈ E and [A(G)]ij = 0 otherwise. The self-loop

matrix ∆s(G) ∈ Rn×n is a diagonal matrix with wii at position (i, i).

A special family of graphs is the strongly connected graphs where a graph is
strongly connected if between every pair of distinct nodes there exists a directed path
of edges.

2.2. Cartesian Product. There is an abundance of e�ective methods via which
large-scale networks (graphs) can be synthesized from a set of smaller graphs [7]. The
Cartesian product is one such method and is de�ned for a pair of factor graphs
G1 = (V1, E1,W1) and G2 = (V2, E2,W2) and denoted by G = G1�G2. The product
graph G has the vertex set V1 × V2 and there is an edge from vertex (i, p) to (j, q) in
V1× V2 if and only if either i = j and (p, q) is an edge of E2, or p = q and (u, v) is an

edge of E1. The corresponding weight if an edge exists is w((i,p),(j,q)) = w
δpq
ij + w

δij
pq

where δij = 1 if i = j and 0 otherwise. The Cartesian product is commutative and
associative, i.e., the products G1�G2 and G2�G1 are isomorphic; similarly (G1�G2)�G3
and G1�(G2�G3) are isomorphic.

An example of the Cartesian product of two factor graphs is displayed in Figure
2.1a)-c).

A graph is called prime if it cannot be decomposed into the product of non-trivial
graphs, otherwise a graph is referred to as composite. Sabidussi [14] and Vizing
[16] highlighted the fundamental nature of the primes, and noted that connected
graphs decompose uniquely into primes, up to reordering. Further, Feigenbaum [4]
demonstrated that a graph can be factored into primes in polynomial-time.

Many features of the factors of a composite graph transfer to the composite graph
itself. One such example is that if factors G1 and G2 are strongly connected, then so
too is G1�G2. In this paper we show that when the composite graph underlies a
dynamic system that many useful features of dynamics can be revealed by examining
dynamics systems over the factor graphs.

We now proceed to introduce Z-matrix dynamics and their underlying graph.

3. Z-matrix Dynamics. We consider a multi-agent network of n coupled nodes
with the state of each node i de�ned as xi(t) ∈ R at time t, and driven by a control
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Figure 2.1. Left: Factor graphs G1 and G2 and composite graph G1�G2. Edge weights of all

graphs are 1 unless otherwise marked. Right: Trajectories of the Z-matrix dynamics over G1, G2 and
G1�G2 with unforced state dynamics x1(t), x2(t) and x(t), respectively, compared to x1(t) ⊗ x2(t);
for details see Lemma 5.2.

u(t) ∈ Rm. The system is described by the di�erential equations

ẋi(t) = −wiixi(t) +
∑

j∈N (i)

wijxj(t) + bTi u(t), i = 1, . . . , n.

The unforced and forced components of the signal x(t) are denoted by xu(t) and
xf (t), respectively. This notation will be used throughout. In a more compact form
the dynamics can be written as

ẋ(t) = −A(G)x(t) +Bu(t),(3.1)

where x(t) = [x1(t), . . . , xn(t)]
T ∈ Rn, B = [b1, . . . , bn]T ∈ Rn×m, and the matrix

representation of G is de�ned as A(G) := 2∆s(G)−A(G), i.e.,

A(G) =


w11 −w12 · · · −w1n

−w21 w22 −w23

...
...

. . . −wn−1,n
−wn1 · · · −wn,n−1 wnn

 .
In this way, the matrix A(G), as with the adjacency matrix, codi�es the interconnec-
tions between nodes.

We de�ne the class of matrices of this form as

Zn =
{
A = (aij) ∈ Rn×n : aii ≥ 0, aij ≤ 0, i 6= j

}
.

Z-matrices are matrices with nonpositive o�-diagonals, hence Zn is a subclass of Z-
Matrices, motivating the name Z-Matrix dynamics for model (3.1).

The negation of Z-matrices falls into the class of essentially nonnegative ma-
trices. These are matrices which have positive o�-diagonals and bounded diago-
nals. This connection facilitates establishing positive invariance of the positive set
S+ = {x(t)|x(t) ≥ 0} with respect to model (3.1) when A ∈ Zn. The result that
establishes positive invariance and that will be used in the subsequent paper is as
follows.
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Proposition 3.1. Let A and B be essentially nonnegative matrices with A ≥ B;
that is A + sI ≥ 0 and B + sI ≥ 0 for all real s su�ciently large. For all t ≥ 0,
etA ≥ etB ≥ 0.

Proof. Let s be su�ciently large such that A + sI ≥ 0 and B + sI ≥ 0, then
(A+ sI)

j ≥ (B + sI)
j ≥ 0 for all positive integer j. Hence,

etB = et(B+sI) = e−ts
∞∑
j=0

(t (B + sI))
j

j!
≥ 0.

Further,

etA = e−ts
∞∑
j=0

(t (A+ sI))
j

j!
≥ e−ts

∞∑
j=0

(t (B + sI))
j

j!
= etB .

We will now introduce families of dynamics with similar attributes via the con-
struct of interval matrices.

4. Interval Matrices. We commence by de�ning interval matrices.

Definition 4.1. If A and A are two matrices in Rn×m with A ≤ A then the set
of matrices

A =
[
A,A

]
=
{
A : A ≤ A ≤ A

}
is called an interval matrix, and the matrices A and A are called its bounds. Further,
this interval is referred to as symmetric if A and A are symmetric.

Hence A ∈ A if [A ]ij ≤ [A ]ij ≤ [A ]ij for all i = 1, . . . , n and j = 1, . . . ,m.
We emphasize that each entry in A can vary arbitrarily in its interval independent
of the other entries in A. A symmetric interval matrix can also contain asymmetric
matrices.

The examination of interval matrices arises naturally in control theory in connec-
tion with the behavior of linear time invariant systems under perturbations, and has
been extensively studied. We refer the reader the the survey papers by Mansour [9]
and Rohn [13] for a detailed list of references.

When the matrix intervals bounds are Z-matrices then all matrices contained in
the interval are Z-matrices. A similar result is true for our subclass of matrix Zn, this
is stated formally without proof in the following proposition:

Proposition 4.2. Consider the matrices in the class Zn, A(G) and A(G) with
A(G) ≤ A(G) corresponding to n-node graphs G and G. Every matrix in the matrix
interval A =

[
A(G), A(G)

]
is in the class Zn.

The motivation for using matrix interval's is that Z-matrices exhibit many useful
additive ordering properties and A(G) ∈

[
A(G), A(G)

]
implies that G ∈

[
G,G

]
if and

only if self-loops and their weights in G, G and G are the same. The advantage
of Z-matrix intervals is that trajectory bounds can be provided for dynamic systems
de�ned by matrices contained in a Z-matrix interval matrix, as shown in the following:

Proposition 4.3. Let G1 and G2 be �nite graphs. Consider x(t) and x(t) to be
the respective states of the systems

ẋ(t) = −A(G)x(t) +Bu(t)

ẋ(t) = −A(G)x(t) +Bu(t).
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Then, the state trajectory generated by the dynamics

ẋ(t) = −Ax(t) +Bu(t),

for A ∈ A =
[
A(G), A(G)

]
, B ∈ B =

[
B,B

]
and 0 ≤ u(t) ≤ u(t) ≤ u(t) is bounded as

x(t) ≤ x(t) ≤ x(t),

for all t when initialized from 0 ≤ x(0) ≤ x(0) ≤ x(0).
Proof. For every A ∈ A, A(G) ≤ A. From Proposition 3.1, the unforced dynamics

is bounded as

xu(t) = e−Atx(0) ≥ e−A(G)tx(0) ≥ e−A(G)tx(0) = xu(t).

Similarly, xu(t) ≤ xu(t). For t ≥ τ ≥ 0, from Proposition 3.1, the forced dynamics is
bounded as

e−A(t−τ)Bu(τ) ≥ e−A(G)(t−τ)Bu(τ)

≥ e−A(G)(t−τ)Bu(τ)ˆ t

0

e−A(t−τ)Bu(τ)dτ ≥
ˆ t

0

e−A(G)(t−τ)Bu(τ)dτ

xf (t) ≥ xf (t).

Similarly, xf (t) ≤ xf (t). Noting that the dynamics are formed by the sum of its
unforced and forced dynamics, the proposition follows.

The following section analyzes the Z-matrix dynamics and Z-matrix intervals
dynamics formed from applying Cartesian products to graphs.

5. Z-Matrix Dynamics over Cartesian Products of Graphs. The Carte-
sian product over graphs can be formulated in terms of their Z-matrix representations
using the Kronecker sum.

Proposition 5.1. Let G1 and G2 be a pair of graphs of order n and m, respec-
tively. Then A(G1�G2) = A(G1)⊕A(G2).

Proof. The proposition follows directly from the de�nition of the graph product
and the Z-matrix realization of a graph.

We now present a result which we refer to as the factorization lemma for Z-matrix
dynamics.

Lemma 5.2. [Factorization] Consider x1(t) and x2(t) to be the respective states
of the systems

ẋ1(t) = −A(G1)x1(t) +B1u1(t)

ẋ2(t) = −A(G2)x2(t) +B2u2(t),

for all time t. Then, the unforced state trajectory generated by the dynamics

ẋ(t) = −A(G1�G2)x(t) + (B1 ⊗B2) (u1(t)⊗ u2(t))

is

xu(t) = x1u(t)⊗ x2u(t),

and the forced state trajectory is

xf (t) =

ˆ t

0

ẋ1f (τ)⊗ ẋ2f (τ)dτ,
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for all time t and with initial conditions x(0) = x1(0)⊗ x2(0).
Proof. From Proposition 5.1, examining the unforced dynamics we have

xu(t) = e−A(G1�G2)tx(0)

= e−A(G1)t⊕−A(G2)t(x1(0)⊗ x2(0))

=
(
e−A(G1)t ⊗ e−A(G2)t

)
(x1(0)⊗ x2(0))

= e−A(G1)tx1(0)⊗ e−A(G2)tx2(0)

= x1u(t)⊗ x2u(t).

Examining the forced dynamics, we have

xf (t) =

ˆ t

0

e−A(G1�G2)(t−τ)(B1 ⊗B2)(u1(τ)⊗ u2(τ))dτ

=

ˆ t

0

(
e−A(G1)(t−τ) ⊗ e−A(G2)(t−τ)

)
(B1 ⊗B2)(u1(τ)⊗ u2(τ))dτ

=

ˆ t

0

z1(τ)⊗ z2(τ)dτ,

where z1(τ) = e−A(G1)(t−τ)B1u1(τ) and z2(τ) = e−A(G2)(t−τ)B2u2(τ). Noting that
ẋif (τ) = d

dτ

´ τ
0
zi(t̄)dt̄ = zi(τ), for i = 1, 2, the lemma follows.

Figure 2.1 displays an example the unforced trajectories in Lemma 5.2. Note
that, due to the associativity of the Cartesian product, the result extends to arbitrary
chains of Cartesian products.

Observing that ifA(G1) ≤ A(G1) andA(G2) ≤ A(G2) thenA(G1�G2) ≤ A(G1�G2),

we can de�ne a Z-matrix interval
[
A(G1�G2), A(G1�G2)

]
with composite interval ma-

trix bounds. The following lemma shows that trajectories of dynamics de�ned by Z-
matrices in this interval are bounded above and below by the trajectories of dynamics
de�ned by the factor Z-matrices A(G1), A(G2), A(G1) and A(G2).

Lemma 5.3. [Interval Factorization] Consider x1(t), x1(t), x2(t) and x2(t) to be
the respective states of the systems

ẋ1(t) = −A(G1)x1(t) +B1u1(t)

ẋ1(t) = −A(G1)x1(t) +B1u1(t)

ẋ2(t) = −A(G2)x2(t) +B2u2(t)

ẋ2(t) = −A(G2)x2(t) +B2u2(t).

Then, the unforced state trajectory generated by the dynamics

ẋ(t) = −Ax(t) +Bu(t),

for A ∈ A =
[
A(G1�G2), A(G1�G2)

]
, B ∈ B =

[
B1 ⊗B2, B1 ⊗B2

]
≥ 0, u1(t) ⊗

u2(t) ≤ u(t) ≤ u1(t)⊗ u2(t) and 0 ≤ ui(t) ≤ ui(t) for i = 1, 2 is bounded as

x1u(t)⊗ x2u(t) ≤ xu(t) ≤ x1u(t)⊗ x2u(t),

and the forced state trajectory is bounded as

ˆ t

0

ẋ1f (τ)⊗ ẋ2f (τ)dτ ≤ xf (t) ≤
ˆ t

0

ẋ1f (τ)⊗ ẋ2f (τ)dτ,
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for all time t with initial conditions

x1(0)⊗ x2(0) ≤ x(0) ≤ x1(0)⊗ x2(0),

and 0 ≤ xi(t) ≤ xi(t) for i = 1, 2.
Proof. Consider the dynamics

ż(t) = −A(G1�G2)z(t) + (B1 ⊗B2) (u1(t)⊗ u2(t))

ż(t) = −A(G1�G2)z(t) +
(
B1 ⊗B2

)
(u1(t)⊗ u2(t))

ẋ(t) = −Ax(t) +Bu(t)

where 0 ≤ z(0) ≤ x(0) ≤ z(0). From Proposition 4.3, z(t) ≤ x(t) ≤ z(t) for all t > 0.
Further letting z(0) = x1(0) ⊗ x2(0) and z(0) = x1(0) ⊗ x2(0) using Lemma 5.2, the
lemma follows.

The signi�cance of this result is that graph-based dynamics need not be composite
to take advantage of the factorization lemma. Indeed its Z-matrix graph representa-
tion need only be bounded by the Z-matrix representations of its composite graphs.
Further, the factor graph dynamics provides bounds on nonnegative composite dy-
namics independent of where the composite trajectory is initialized, i.e., x(0) can be
chosen anywhere in (Rnm)≥0 rather than Rn ⊗ Rm ∼= Rn+m as for Lemma 5.2.

Figure 5.1 displays sample graphs G1, G1, G2, G2, G1�G2, G1�G2 and G pertaining
to Lemma 5.3. The related trajectories of the 16 states are in Figure 5.2.

6. Conclusion. This paper presents an analysis for a class of dynamic networks
involving Z-matrices. We explored the decomposition of such networks into smaller
factor-networks. The trajectories of the composite network were generated from the
factors' trajectories. Also, families of networks similar to the composite network
were bounded by the factors' trajectories. Future work of particular interest is the
examination of set controllability for such networks under graph products.
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Figure 5.2. Trajectories x1u(t)⊗x2u(t)+
´ t
0 ẋ1f (τ)⊗ ẋ2f (τ)dτ (blue/dashed), x(t) (red/solid),

x1u(t)⊗x2u(t)+
´ t
0 ẋ1f (τ)⊗ ẋ2f (τ)dτ (green/dotted) with underlying graph structure in Figure 5.1.

The control matrices are B1 = B1 = e1, B2 = B2 = [e2, e3 + e4] and B = B1 ⊗ B2. The controls
are positive random signals satisfying the ordering requirement of Lemma 5.3.
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